Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Polymer Additive-Promoted Porous PbBr₂ Layer for Fabricating High-Performance

Carbon-Based CsPbIBr₂ Perovskite Solar Cells through a Two-Step Sequential

Deposition Process

Guiqiang Wang, Jiarun Chang, Dongsheng Wang, Jiayu Bi, Fanning Meng

School of chemistry and Materials, Bohai University, Jinzhou 121003

Fig. S1 Schematic illustration of the fabrication process of $CsPbIBr_2$ perovskite film through a two-step sequential deposition process.

Fig. S2 Photographs of $PbBr_2$ solution without and with 9 mg PEG and their Tyndall effect

Fig. S3 Size distributions of PbBr₂ colloidal particles in the solution with different amounts of PEG detected by dynamic light scattering.

Fig. S4 Schematic process of PbBr₂ colloid aggregation induced by PEG additive

Fig. S5 Photographs of $PbBr_2$ film deposited on FTO/TiO_2 substrate without and with 9 mg PEG

Fig. S6 XRD curves of PbBr₂ film with different amounts of PEG

Fig. S7 (a) UV-vis absorption spectra and (b) XRD curves of $CsPbIBr_2$ perovskite obtained from CsI solution with different concentrations.

Fig. S8 Cross-sectional SEM images of the control (a) and 9PEG (b) CsPbIBr₂ perovskite films

Fig. S9 The statistical PCEs of 30 independent cells based on $9PEG CsPbIBr_2$ perovskite film.

Fig. S10 Dark current density-voltage curves of the devices based on the control and 9PEG CsPbIBr₂ perovskite films

Fig. S11 SEM image of CsPbIBr₂ perovskite film obtained by one-step solution process