Top-seeded solution growth and characterization of β -Ga₂O₃

Yufei Song, Xiaojie Guo, Wenxiang Mu, Xutang Tao, Zeliang Gao*

Correspondence: Zeliang Gao (*gaozeliang@sdu.edu.cn.*)

State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong

250100, China.

Empirical formula	Ga ₂ O ₃
Formula weight	374.88
Temperature (K)	273
Crystal system	Monoclinic
Space group	C2/m
<i>a</i> (Å)	12.247(10)
<i>b</i> (Å)	3.044(2), β=103.866(4)°
<i>c</i> (Å)	5.813(5)
Volume(Å ³)	210.41(3)
Z	2
$D_c (\mathrm{g}\mathrm{cm}^{-3})$	5.917
$\mu (\mathrm{mm}^{-1})$	24.279
F(000)	334
Completeness to theta	99.6%
GOF on F^2	1.042
$R_{l}, wR_{2} (I \geq 2\sigma(I))^{a}$	0.0221, 0.0513
R_1 , wR_2 (all data)	0.0282, 0.0542
Largest diff. peak and hole (eÅ ⁻³)	0.781 and -0.763

Table S1. Crystallographic Data and Structural Refinements for β -Ga₂O₃.

^[a] $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$ and $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w F_o^4]^{1/2}$ for $F_o^2 > 2\sigma(F_o^2)$

Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²), bond valence sums (BVSs) for β -Ga₂O₃.

Atom	x/a	y/b	z/c	U(eq)	BVS
Gal	0.40951(5)	0.5	0.70552(11)	0.0062(2)	2.92
Ga2	0.65866(5)	0	0.81391(11)	0.0061(2)	2.94
01	0.3264(3)	0.5	0.9365(7)	0.0055(8)	1.93
02	0.3354(4)	0.5	0.3910(8)	0.0090(8)	1.87
03	0.4963(3)	0	0.7566(8)	0.0098(9)	2.06

Table S3. Selected Bond Distances (Å) and Angles (°) for β -Ga₂O₃.

Atom–Atom	Length [Å]	Atom-Atom-Atom	Angle [°]
Ga1-O2	1.836(5)	O3-Ga1-O1	106.08(14)
Ga1-O3	1.839(2)	O3-Ga2-O2#7	94.71(15)
Ga2-O3	1.936(4)	O3-Ga2-O1#4	169.43(17)

Ga2-O2#5	1.945(3)	O2#7-Ga2-O1#4	91.85(15)
Ga2-O1#6	2.080(3)	O2#5-Ga2-O1#8	171.80(18)
Ga1-O2	1.836(5)	O1#4-Ga2-O1#8	80.82(11)
Ga1-O3	1.839(2)	O2#5-Ga2-O1#6	81.06(13)
Ga2-O3	1.936(4)	O1#4-Ga2-O1#6	80.82(11)
Ga2-O2#5	1.945(3)	O2-Ga1-O3#2	106.82(16)
Ga2-O1#6	2.080(3)	O3#2-Ga1-O3	111.7(2)
Ga1-O2	1.836(5)	O3#2-Ga1-O1	106.08(14)
Ga1-O3	1.839(2)	O3-Ga2-O2#5	94.71(15)
Ga2-O3	1.936(4)	O2#5-Ga2-O2#7	103.0(2)
Ga2-O2#5	1.945(3)	O2#5-Ga2-O1#4	91.85(15)
Ga2-O1#6	2.080(3)	O3-Ga2-O1#8	92.02(14)
Ga1-O2	1.836(5)	O2#7-Ga2-O1#8	81.06(13)
Ga1-O3	1.839(2)	O3-Ga2-O1#6	92.02(14)
Ga2-O3	1.936(4)	O2#7-Ga2-O1#6	171.80(18)
Ga2-O2#5	1.945(3)	O1#8-Ga2-O1#6	94.04(16)
Ga2-O1#6	2.080(3)	O2-Ga1-O3	106.82(15)
O2-Ga1-O1	119.41(19)		

Symmetry transformations used to generate equivalent atoms:

#1 x, y-1, z	#2 x, y+1, z	#3 x-1/2, y+1/2, z	#4 x+1/2, y-1/2, z
#5 -x+1, -y, -z+1	#6 -x+1, -y, -z+2	#7 -x+1, -y+1, -z+1	#8 -x+1, -y+1, -z+2

Compound	Methods of crystal growth	FWHM	Ref.
β -Ga ₂ O ₃	the floating zone technique (OFZ)	324″	1
β -Ga ₂ O ₃	edge-defined film-fed growth (EFG)	90″	2
β -Ga ₂ O ₃	OFZ	100″	3
β -Ga ₂ O ₃	OFZ	108″	4
β -Ga ₂ O ₃	Czochralski (CZ)	36″	5
β -Ga ₂ O ₃	EFG	59.4″	6
β -Ga ₂ O ₃	EFG	69.3″	7
β-Ga ₂ O ₃	TSSG	140.04″	This work

Table S4. The full-width at half maximum (FWHM) comparison of β -Ga₂O₃ by different methods.

Fig. S1. (a) Complete coordination environment of cations in β -Ga₂O₃, (b) Ball-and-stick representation of the unit cell of β -Ga₂O₃ crystal structure along the b-axis, and (c) polyhedral representation of the β -Ga₂O₃ crystal structure.

Fig. S2. The powder X-ray diffraction pattern of $GaTe_2O_6$ crystal (sticking on the rod).

Fig. S3. The EDS spectra of β -Ga₂O₃ crystal.

Fig. S4. I-V curves for resistivity measurements of β -Ga₂O₃ crystal.

References

- 1. E. G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki and N. Ichinose, J. Cryst. Growth, 2004, 270, 420-426.
- 2. Y. Bu, J. Wei, Q. Sai and H. Qi, CrystEngComm, 2023, 25, 3556-3563.
- 3. J. Zhang, B. Li, C. Xia, G. Pei, Q. Deng, Z. Yang, W. Xu, H. Shi, F. Wu, Y. Wu and J. Xu, *J. Phys. Chem. Solids*, 2006, **67**, 2448-2451.
- 4. P. Li, X. Han, D. Chen, Q. Sai and H. Qi, CrystEngComm, 2022, 24, 5588-5596.
- 5. S. Wang, X. Wang, C. Ji, P. Dai, L. Shen and N. Bao, CrystEngComm, 2024, 26, 1312-1318.
- 6. B. Fu, G. Jian, W. Mu, Y. Li, H. Wang, Z. Jia, Y. Li, S. Long, Y. Shi and X. Tao, *J. Alloys Compd.*, 2022, **896**, 162830.
- 7. B. Fu, W. Mu, J. Zhang, X. Wang, W. Zhuang, Y. Yin, Z. Jia and X. Tao, *CrystEngComm*, 2020, **22**, 5060-5066.