Electronic supplementary information

Syntheses, structures and magnetic properties of three dinuclear, one-dimensional and two-dimensional Dysprosium(III) complexes based on naphthalene diimide salicylic acid

Jia-Ting Chen[†], Xiao-Man Kuang[†], You-Hong Li, Yun-Jing Zhong, Hui Zhang,^a Jia-Yin Su,^a

Wen-Bin Chen*, Wen Dong*

Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China. E-mail: chenwb2018@gzhu.edu.cn; dw320@aliyun.com

†Jia-Ting Chen and Xiao-Man Kuang contributed equally.

Scheme S1. Synthesis of H ₄ NDISAS
Table S1. geometry analysis by using SHAPE 2.0 program (complex 1 and 3)S
Table S2. geometry analysis by using SHAPE 2.0 program (complex 2)S
Figure S1. For 1, inter-molecular O19-H19B····O3 hydrogen bonding interaction and 1I
face-to-face π - π stacking interactionS
Figure S2. For 2, crystal structureS
Figure S3. For 3, 1D face-to-face π - π stacking interactionS
Figure S4. Powder X-ray diffraction (PXRD) patterns for complexes 1-3S.
Fig. S5 TG curves of complexes 1-3Si
Figure S6. <i>M</i> versus <i>H</i> / <i>T</i> curves for 1-3 (a-c)S4
Figure S7. Temperature dependence of χ'_M product and χ''_M for complexes 1-3 (a-c) in
1000 Oe dc fieldS
Table S3. Crystallographic data and redefinement parameters for complex 1-3S2
Table S4. Selected bond lengths (Å) and angles (°) for complex 1Selected bond lengths (Å) and angles (°) for complex 1
Table S5. Selected bond lengths (Å) and angles (°) for complex 2S
Table S6. Selected bond lengths (Å) and angles (°) for complex 3

Scheme S1. Synthesis of N,N'-bis(3-carboxy-4-hydroxyphenyl)-1,4,5,8naphthalenetetradicarboximide (H₄NDISA).

Table S1. geometry analysis by using SHAPE 2.0 program (complex 1 and 3)

	SAPR-8	TDD-8	JBTPR-8	BTPR-8	JSD-8
	(D _{4d})	(D _{2h})	(C _{2V})	(C _{2v})	(D _{2d})
1	1.0003	0.9829	1.8019	1.4860	2.8753
3	3.7518	1.1756	4.0640	3.6774	4.4688

racie of geometry analysis of asing sin in 1 2.0 program (compreh 2)	Fable S2. geometr	y analysis b	y using SH	IAPE 2.0 pr	ogram (com	plex 2)
--	-------------------	--------------	------------	-------------	------------	---------

	JCSAPR-9	CSAPR-9	JTCTPR-9	TCTPR-9	MFF-9
	(C _{4V})	(C _{4v})	(D _{3h})	(D _{3h})	(C _s)
2	1.9197	0.8247	2.6546	1.1809	1.2309

*SAPR-8 = Square antiprism; TDD-8 = Triangular dodecahedron;

JBTPR-8 = Biaugmented trigonal prism; BTPR-8 = Biaugmented trigonal prism;

JSD-8 = Snub diphenoid; JCSAPR-9 = Capped square antiprism;

CSAPR-9 = Spherical capped square antiprism; JTCTPR-9 = Tricapped trigonal prism;

TCTPR-9 = Spherical tricapped trigonal prism; MFF-9 = Muffin.

Figure S1. For 1, inter-molecular O19-H19B···O3 hydrogen bonding interaction and 1D face-toface π - π stacking interaction. Hydrogen atoms and part solvent molecules were omitted for clarity. Color code: Dy, green; O, red; N, blue; C, gray. Hydrogen atoms and uncoordinated solvent molecules were omitted for clarity.

Figure S2. For **2**, crystal structure. Hydrogen atoms and part solvent molecules were omitted for clarity. Color code: Dy, green; O, red; N, blue; C, gray. Hydrogen atoms and uncoordinated solvent molecules were omitted for clarity.

Figure S3. For **3**, 1D face-to-face π - π stacking interaction. Hydrogen atoms and part solvent molecules were omitted for clarity. Color code: Dy, green; O, red; N, blue; C, gray. Hydrogen atoms and uncoordinated solvent molecules were omitted for clarity.

Figure S4. Powder X-ray diffraction (PXRD) patterns for complexes 1-3.

Figure S5 TG curves of complexes 1-3.

Figure S6. M versus H/T curves for **1-3** (a-c).

Figure S7. Temperature dependence of χ'_M product and χ''_M for complexes 1-3 (a-c) in a 1000 Oe dc field.

Identification code	1	2	3
Empirical formula	$C_{96}H_{88}Dy_2N_{10}O_{46}$	C ₅₄ H ₅₈ DyN ₇ O ₂₅	$C_{28}H_{19}DyN_2O_{14}$
Formula weight	2442.76	1367.57	769.95
Crystal system	triclinic	triclinic	monoclinic
Space group	P-1	P-1	$P2_1/n$
a/Å	11.7197(2)	11.5540(2)	8.8770(3)
b/Å	12.7121(2)	12.8863(2)	37.7347(9)
c/Å	17.4599(3)	19.4414(3)	8.9024(4)
$\alpha/^{\circ}$	74.413(2)	83.0210(10)	90
β/°	71.436(2)	74.564(2)	119.789(5)
$\gamma/^{\circ}$	86.5400(10)	84.6300(10)	90
Volume/Å ³	2374.28(8)	2763.83(8)	2587.99(19)
Ζ	1	2	4
$ ho_{calc}g/cm^3$	1.708	1.643	1.976
µ/mm ⁻¹	1.670	8.062	2.972
F(000)	1234.0	1394.0	1516.0
Reflections collected	35944	40597	34502
Independent reflections	12043	10870	5955
Data/restraints/parameters	12043/46/793	10870/36/830	5955/0/407
Goodness-of-fit on F ²	1.072	1.054	1.124
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0398,$	$R_1 = 0.0514,$	$R_1 = 0.0382,$
	$wR_2 = 0.1018$	$wR_2 = 0.1348$	$wR_2 = 0.0738$
Final R indexes [all data]	$R_1 = 0.0489,$	$R_1 = 0.0588,$	$R_1 = 0.0483,$
	$wR_2 = 0.1059$	$wR_2 = 0.1396$	$wR_2 = 0.0768$
Largest diff. peak/hole/ e Å ⁻³	2.00/-1.16	1.32/-1.11	1.24/-1.92
CCDC	2369945	2369946	2369947

Table S3. Crystallographic data and redefinement parameters for complex 1-3

Complex 1					
Dy1-O16	2.290(3)	O16-Dy1-O2	80.80(10)		
Dy1-O22	2.30(4)	O22-Dy1-O2	71.6(10)		
Dy1-O12	2.320(2)	O12-Dy1-O2	144.85(9)		
Dy1-O21	2.335(13)	O21-Dy1-O2	71.6(4)		
Dy1-O19	2.347(2)	O19-Dy1-O2	74.73(9)		
Dy1-O2	2.398(2)	O16-Dy1-O18	145.11(11)		
Dy1-O18	2.411(3)	O22-Dy1-O18	69.9(9)		
Dy1-O20	2.417(3)	O12-Dy1-O18	73.04(9)		
Dy1-O17	2.423(3)	O21-Dy1-O18	78.2(3)		
O16-Dy1-O22	96.6(8)	O19-Dy1-O18	69.09(9)		
O16-Dy1-O12	104.83(10)	O2-Dy1-O18	121.57(8)		
O22-Dy1-O12	139.6(10)	O16-Dy1-O20	73.39(10)		
O16-Dy1-O21	85.6(3)	O22-Dy1-O20	144.0(10)		
O12-Dy1-O21	142.6(4)	O12-Dy1-O20	75.81(9)		
O16-Dy1-O19	145.79(10)	O21-Dy1-O20	140.9(4)		
O22-Dy1-O19	97.9(8)	O19-Dy1-O20	76.70(9)		
O12-Dy1-O19	83.24(9)	O2-Dy1-O20	72.71(9)		
O21-Dy1-O19	108.3(3)	O18-Dy1-O20	135.70(10)		
O16-Dy1-O17	73.52(12)	O19-Dy1-O17	140.18(11)		
O22-Dy1-O17	76.4(9)	O2-Dy1-O17	135.89(11)		
O12-Dy1-O17	77.44(11)	O18-Dy1-O17	72.06(11)		
O21-Dy1-O17	71.2(4)	O20-Dy1-O17	129.77(11)		

Table S4. Selected bond lengths (Å) and angles (°) for complex 1

Table S5. Selected bond lengths (A) and angles (°) for complex 2					
Complex-2					
Dy1-O7 ¹	2.410(3)	O71-Dy1-O3	140.91(10)		
Dy1-O2	2.475(3)	O71-Dy1-O20	68.74(10)		
Dy1-O3	2.536(3)	O71-Dy1-O18	139.55(11)		
Dy1-O8	2.358(3)	O71-Dy1-C7	149.29(11)		
Dy1-O20	2.430(3)	O2-Dy1-O3	51.94(10)		
Dy1-O19	2.408(3)	O2-Dy1-C7	26.39(12)		
Dy1-O18	2.417(3)	O3-Dy1-C7	25.56(12)		
Dy1-O17	2.405(3)	O8-Dy1-O7 ¹	93.04(10)		
Dy1-O16	2.353(3)	O8-Dy1-O2	77.64(10)		
O71-Dy1-O2	141.08(11)	O8-Dy1-O3	123.93(10)		
O16Dy1-O17	71.18(12)	O16-Dy1-C7	98.93(12)		
O16-Dy1-O18	82.14(12)	O16-Dy1-O19	139.52(12)		
O16-Dy1O20	71.74(11)	O16-Dy1-O3	73.42(11)		
O16-Dy1-O8	142.99(11)	O16-Dy1-O2	125.15(11)		
O16-Dy1-O7 ¹	84.37(11)	O17-Dy1-C7	81.47(12)		
O17-Dy1-O18	137.75(11)	O17-Dy1-O3	71.87(11)		
O17Dy1-O19	70.40(12)	O17-Dy1-O2	93.72(11)		
O17-Dy1-O20	126.62(11)	O17-Dy1-O7 ¹	70.65(11)		
O18-Dy1-C7	70.79(12)	O18-Dy1-O20	70.82(10)		
O18-Dy1-O2	75.30(11)	O18-Dy1-O3	69.40(11)		
O8-Dy1-O20	72.97(11)	O8-Dy1-O19	72.05(11)		
O19-Dy1-C7	87.59(12)	O19-Dy1-O3	105.78(10)		
O19-Dy1-O18	136.68(11)	O19-Dy1-O2	69.81(10)		
O19-Dy1-O20	124.31(10)	O19-Dy1-O7 ¹	71.37(10)		
O20-Dy1-C7	141.38(11)	O20-Dy1-O3	129.66(10)		
O20-Dy1-O2	139.31(11)	O8-Dy1-C7	101.64(12)		
O8-Dy1-O17	142.15(11)	O8-Dy1-O18	76.13(11)		

Table S5. Selected bond lengths (Å) and angles (°) for complex ${\bf 2}$

Complex 3				
Dy1-O1	2.239(3)	O1-Dy1-O2	71.95(10)	
Dy1-O9 ²	2.354(3)	O1-Dy1-O31	83.09(11)	
Dy1-O10 ³	2.318(3)	O1-Dy1-O9 ²	139.18(10)	
Dy1-O11	2.361(3)	O1-Dy1-O10 ³	76.80(11)	
Dy1-O12	2.384(3)	O1-Dy1-O11	92.96(11)	
Dy1-O2 ¹	2.541(3)	O1-Dy1-O12	152.89(11)	
Dy1-O2	2.428(3)	O1-Dy1-C7 ¹	89.86(11)	
Dy1-O3 ¹	2.416(3)	O2-Dy1-O2 ¹	139.42(9)	
O1-Dy1-O2 ¹	95.83(10)	O2-Dy1-C7 ¹	113.03(11)	
O12-Dy1-C71	95.99(11)	O11-Dy1-O21	145.40(10)	
O12-Dy1-O3 ¹	112.59(11)	O11-Dy1-O2	75.01(10)	
O12-Dy1-O2 ¹	78.90(10)	O10 ³ -Dy1-C7 ¹	100.30(11)	
O12-Dy1-O2	128.35(10)	O10 ³ -Dy1-O12	76.11(11)	
O11-Dy1-C7 ¹	171.96(11)	O10 ³ -Dy1-O11	73.08(11)	
O11-Dy1-O12	78.16(11)	O10 ³ -Dy1-O9 ²	143.96(10)	
O11-Dy1-O3 ¹	162.33(10)	O10 ³ -Dy1-O3 ¹	122.21(11)	
O9 ² -Dy1-C7 ¹	81.54(11)	O10 ³ -Dy1-O2 ¹	76.50(10)	
O9 ² -Dy1-O12	67.93(10)	O10 ³ -Dy1-O2	133.46(10)	
O9 ² -Dy1-O11	101.05(11)	O9 ² -Dy1-O3 ¹	72.04(11)	
O3 ¹ -Dy1-C7 ¹	25.67(11)	O9 ² -Dy1-O2	75.01(10)	
O31-Dy1-O2	87.41(10)	O9 ² -Dy1-O2 ¹	93.87(10)	
O3 ¹ -Dy1-O2 ¹	52.27(9)	O21-Dy1-C7 ¹	26.62(10)	

Table S6. Selected bond lengths (Å) and angles (°) for complex ${\bf 3}$