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1. MACHINE LEARNING

1.1. Representation

The generation of the used crystal structure descriptors is based on the package librascal by Musil et al. (2021)

and uses its spherical invariants module, which generates soap descriptors for the atomic environments contained

in the input molecular configuration. The unit cells of each crystal are extracted from vasp inputs and parsed into

ase (Larsen et al. (2017)) formats. We use as atomic representation the power spectrum centered around each atom

in the unit cell. The number of radial basis functions and spherical harmonics channels are selected based on memory

constraints to nmax = 14 and lmax = 9 and a fixed radial cutoff of rcut = 4.5 Å throughout each exercise. This choice

is close to the optimal value across each system and is in line with literature-reported best practices in molecular

crystals energy models (Anelli et al. (2018); Musil et al. (2018)). We further adopt a radial filter, as introduced by

Willatt et al. (2018) to enhance the models’ accuracy, with parameters fixed at rate = 1, scale = 3.5, exponent = 2,

after performing a grid search optimization on fentanyl data. We employ the radial compression scheme proposed by

Goscinski et al. (2021) for compressing radial information computed on the generation structures using nmax = 14

and mapping it to nmax = 5. For every structure, we average the power spectra across each atomic center to obtain a

crystal structure feature vector. The choice of the cutoff turns out to be mostly a hyperparameter choice which can

be tuned depending on the training dataset at hand, but in the presence of large molecular crystal structures, it does

not have a vital effect on the accuracy of the model and the working principle of the selection algorithm. In Figure S1,

we report the learning curves obtained for the fentanyl model. The training set used for the benchmark consists of

the whole reranked dataset obtained by the previous iteration of the grace algorithm. The structures used for the

soap calculations correspond to the tmff optimized configurations - to mimic the minima-to-minima learning scheme

proposed in the main manuscript. The energies are directly the dft energies. The different lines correspond to soap

descriptors built using a different radial cutoff while keeping nmax = 14 and lmax=10 fixed. The radial filter is still

used, although starting from a 6 Å distance (thus effectively “switched off”). As one can see, the performances of the

model do not change dramatically depending on the cutoff choice.

1.2. Delta learning : from force-field structures to dft minima energies

The problem setup is such that we possess an accurate and fast-to-evaluate tailor-made force field per molecule, and

we use this to screen the crystal energy landscape for the most stable molecular packings. This exercise produces a

selection of initial force field minima, called Sgen henceforth, from which we have to distill all the configurations that,

upon relaxation, lie between a desired energetic window on a more accurate reference potential energy surface (pes)
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Figure 1. Learning curves for different cutoff radii soap descriptors (keeping nmax and lmax fixed to 14) in the fentanyl dataset.
The curves are constructed using a ridge regression estimator fitted on a 10-fold cross-validation at each training set size. The
performances across the different radii show a diminishing returns behavior at the onset of 4Å, as previously observed in similar
molecular crystals systems Musil et al. (2018); Anelli et al. (2018)

(i.e. pbe-dft + Neumann-Perrin dispersion corrections). The objective is thus to construct a predictor that maps

the tmff-optimized structure to the energy it would have once minimized with the reference level of theory (dft +

dispersion correction). To make the exercise more efficient, we resort to a delta learning scheme, where the target

energy to be predicted is the energy difference between the ab initio optimized configuration and the starting tmff

energies. Our target is thus defined as Eδ
atomic = (Edft − Etmff)/Natoms, where Natoms simply counts the number of

atoms in the unit cell. The soap descriptors are calculated on the molecular crystal structures contained in the Sgen,

and create the set of generation structures’ descriptors: Xgen.

2. REGRESSION MODEL

2.1. Regression model and training procedure

The regression model for the energies is based on linear regression with an L2 norm penalty in the cost function.

Ytest = WXtest where W = (XtrainX
T
train − λI)−1Ytrain (1)

The I matrix indicates the Ntrain × Ntrain identity matrix. The optimal weights W are calculated on the training

set. They can be then stored to perform a prediction on a new, unseen test point and depend on the choice of the

regularization parameter λ. We use the scikit-learn ridge CV class from its linear models to fit the model and store

its weights. At each training cycle, we divide our dataset in training (80 %) and test (20 %) sets. Since the data

points are ordered according to the order of sampling (i.e. chosen by diversity and improvement to the model), we

do not reshuffle to train our models, and simply train on the first 80 % and predict on the most recent 20 %. To

optimize the choice of the regularization λ we perform a grid search on a log-space spanning [10−10, 10] using 12

sample points (using np.logspace(-10,1,12)). The grid search is performed using the library GridSearchCV from

the scikit-learn library, and it is based on the scikit-learn model class Ridge, with a neg root mean squared error

loss and a 5-fold cross-validation scheme. To perform this optimization we use the training set available at each step.

The best regularization (as the one which minimizes the RMSE across the folds) is then used to train a model on the

training set, and thus to produce an estimator of the property to be used on the test set.

2.2. Uncertainty by resampling



3

To produce an uncertainty we adopt the committee uncertainty scheme proposed by Imbalzano et al. (2021). We

describe in the following the specific implementation choices that we have followed in designing our resampling estimator

for this task. Starting from our training set of dimension N , we subsample nres times a fraction fres of the total data

without replacement, constructing an ensemble of different folds of the initial training set. We independently train a

ridge regression model on each of these subsets, and obtain as a result a committee of predictors yi(X)i=1..nres
.

To extract the prediction and the uncertainty from our collection of models, we simply calculate the mean and

standard deviation of the models’ consensus on a new test point:

yresampling(Xtest) =
1

nres

nres∑
i=1

yi(Xtest) (2)

σ2
resampling(Xtest) =

1

nres − 1

nres∑
i=1

[yi(Xtest)− yresampling(Xtest)]
2 (3)

The limit of subsampling is reached when one distorts the sample size statistics, thus obtaining a conservative

measure of the uncertainty. This happens as the variance across the models is artificially compressed by the reduction

of the property space they are trained on. To compensate for this uncertainty “bias”, we adopt the un-biasing operation

suggested in Imbalzano et al. (2021) and calibrate the models such that the uncertainty is expanded to match the error

it incurs when predicting over a separate calibration set. To do this, we use the test set as a calibration set (while

normally data leaks from test to training should be avoided at all costs, using the test data to calibrate the uncertainty

model is necessary in the presence of extremely low data regime - a scenario in which this algorithm mostly operates)

and calculate an expansion factor αresampling such that our uncertainties match an average error observed over the test

set:

α2
resampling = − 1

nres
+

nres − 3

nres − 1

1

Ntest

Ntest∑
i=1

[yref(Xi)− yresampling(Xi)]
2

σ2
resampling(Xi)

(4)

The final unbiased resampling estimator is built so to reflect this expanded spread while not changing its mean as

follows :

yi(Xtest) = yresampling(Xtest) + αresampling[y
i(Xtest)− yresampling(Xtest)] (5)

A crucial number in the resampling approach is the choice of the number of resampling models. As the reference

Imbalzano et al. (2021) shows, the uncertainties converge to an established value with the number of resampling models

chosen. Across the whole exercise, we use nres = 256 regressors for each model.

3. ACTIVE LEARNING ALGORITHM

3.1. Problem statement

Having prepared a regression scheme for predicting the energies of a target molecular crystal structure, we want to

proceed to use it to guide the selection of which crystal structure to select for a costly energy evaluation through full

geometry optimization. The objective of the prediction exercise is to ensure sampling of all the structures X ∈ Xgen

such that their relative lattice energies Y −YGS < Ewindow, where YGS corresponds to the lowest lattice energy structure

contained in the generation pool (i.e. the putative ground state) and Ewindow corresponds to the energy window we

are willing to sample completely. Trivially, if Ewindow = 0, this exercise becomes a relatively simpler global minima

search. Increasing Ewindow the goal of the exercises shifts to finding all the structures whose energy is contained within

the desired range. We decide to follow an iterative scheme, where we sample Nbatch structures at every iteration, and

then use this batch to extend our training set, obtaining an increasingly more accurate or robust model as we continue

through the iterations. The exercise we want to perform acts on two parallel axes: on the one hand we must ensure a

complete sampling of all the ‘low enough’ (i.e. within a desired cutoff) energy structures present in the dataset, on the

other hand, we want to have an increasingly accurate machine learning model so that we can trust its prediction at

each sampling iteration. In an ideal scenario, a perfect prediction model will point us with 100 % confidence to which

structures to optimize to ensure complete sampling below the desired energy window in one single round sampling

with a batch size corresponding to the total number of expected low energy structures. As the model has an average

mean squared error RMSEi at each sampling iteration i, we account for this uncertainty by introducing a probabilistic

framework to decide which structure to select. To make sure that our model improves with each iteration, and at

the same time prioritizes selections of low energy configurations, we adopt an active learning approach that combines
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exploration (maximizing the robustness of the model to different crystalline packings) and exploitation (sampling low

energy candidates when confident enough). The pool of structures we select from is defined at the beginning of the

exercise and depends on the size of the generation set, which is a function of the complexity of the crystal structure

landscape, and the energy window we want to sample. The choice of the generation set is independent of this approach

and is detailed in Section 5. From this exercise perspective, we will assume to have a finite-sized pool of configurations

we can sample from, called Xgen. With each iteration of sampling, the pool to sample from reduces in size due to the

removal of newly sampled structures.

3.2. Initializing the algorithm

In the absence of samples from the ab initio potential surface, we do not possess any prior knowledge except for the

force-field based ranking we start from. To initialize the construction of our model - and at the same time have an

unbiased sampling of the generation pool - we choose the first batch of Ninit candidates based on structural diversity.

We choose the first number of structures that are the most distinct from the others in order to prepare the machine

learning model to deal with the potentially high diversity present in the crystal structure landscape of the target

molecule. To do this, we follow a farthest point sampling approach (FPS). The deterministic FPS method used in

this work requires solely the knowledge of the feature vector of each of the generation pool crystal structures: Xgen.

To select the most diverse configurations contained in such a set, it is sufficient to ensure a uniform sampling of the

dataset, by selecting each new point so as to maximize a reference distance metric between all of them. In our case,

we adopt a simple Euclidean distance between points and initialize the first selection starting from the lowest tmff

energy structure. The next index selected will be the i such that:

i = argmax(min
j

∥Xi −Xj∥2) (6)

The index j runs over all the already selected points. We repeat this exercise until we have sampled Ninit structures.

3.3. The Expected Improvement function

Once we have optimized the first Ninit structures, we can train a model using the first 80 % of them as training data,

and the remaining as a test/calibration set. We thus have a model M0(X
0
train, y

0
train) (where the superscript index

corresponds to the iteration number), which outputs for each new test point Xtest its predicted lattice energy value

and the uncertainty associated with it: {µtest, σtest}.
To find the next suitable candidate for the minimization, we will want to consider a structure whose prediction either

confidently points to low energy (a so-called exploitation-driven choice) or to a potentially low energy configuration

exhibiting very high uncertainty (an exploration-driven choice) - so as to stabilize the model. To quantify how “good”

each structure is, we repurpose a Bayesian optimization acquisition function Mohr et al. (2022) as our Expected

Improvement (EI) function which provides an easily tunable tradeoff between exploration and exploitation. The EI

function associates each unlabelled point’s prediction tuple (i.e. the pair containing the predicted target and its

uncertainty) with a positive real value which is maximized either by showing low energy (within a desired window) or

by having a “low enough” energy with a high uncertainty. The EI is defined in the following way:

EI(Xtest) =

(−µ(Xtest) + Ebest + Ewindow)Φ(Z) + σ(Xtest)ϕ(Z) if σ(Xtest) > 0

0 if σ(Xtest) = 0
(7)

With Z representing a ratio between the potential for stability and the uncertainty in the prediction, defined as

follows:

Z =


−µ(Xtest)+Ebest+Ewindow

σ(Xtest)
if σ(Xtest) > 0

0 if σ(Xtest) = 0
(8)

Where Φ(Z) is the cumulative distribution function and ϕ(Z) the probability density function of a normal distri-

bution, Ebest the lowest lattice energy found so far and Ewindow serves as an offset term to tune between exploration

and exploitation behavior. While in the original paper Mohr et al. (2022) this term is suggested to be fine-tuned to

obtain an optimal balance between the two regimes of sampling, in this work we use it to control the extension of the

exploitative sampling by making it coincide with the target energy window. The advantage of this choice is that the

acquisition function has no parametric dependence on the offset term and allows a simple interpretation of its values.
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Figure 2. Values of the Expected improvement score on each of the crystal structures evaluated at the different iterations in
the fentanyl exercise. The EI values reach zero when a structure has been sampled or when it has high confidence in being
unstable. As the figures show, the scores follow an intuitive behavior, highlighting points of high EI values as the ones that are
close to the bottom of the landscape. As the bottom of the landscape is completely sampled, the EI values get closer to the
energy window threshold.
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The approach proposed so far allows to assign to each unlabelled point an EI value, as shown in Figure 2. The selection

of the best sample then requires just to choose the xbest ∈ Xgen such that xbest = argmaxi(EI(xi);xi /∈ {x}selected).
Whereas in theory, this method is perfectly suitable for the problem at hand, for practical reasons, it can be preferable

to select a batch of candidates at once, before summoning the ab initio minimization routine. To address this issue,

we adopt the approach proposed by Mohr et al. (2022) and construct a batch selection routine based on the Kriging-

Believer method. If we consider our pool of selected candidates as {x}selected = {x0, x1, x2, ..., xM} at any iteration

step, we select the next configuration xM+1 by maximization of the xM+1 = argmaxi(EI(xi);xi /∈ {x}selected). To

continue selecting a new candidate, we extend the selected pool with the previously chosen xM+1 structure. We assign

to this structure energy its predicted energy and treat it as if it were actually sampled. A new temporary selected

pool is formed and a new model is trained on it. Crucially, the new selected point must be included in the training

set of such a model. We then proceed to use this new temporary model to estimate the EI values for the remnant of

the generation pool and select xM+2 = argmaxi(EI(xi);xi /∈ {{x}selected), xM+1}. We repeat the previous operation

to continue selecting new points until we have collected Nbatch new indices to sample. Throughout our work we use

Nbatch = 100 in the minimizations offentanyl, and Nbatch = 50 for the Roche API dataset.

4. MACHINE LEARNING GUIDED RERANKING

The model M i at iteration i associates to each crystal structure descriptor X an energy probability density function

pXi
(E). By construction, it is a normal distribution centered around the mean predicted energy and with standard

deviation the uncertainty in such prediction so that it can be written in the form:

pXi
=

1√
2πσ2(Xi)

exp

{
− (E − µ(Xi))

2

2σ2(Xi)

}
(9)

To produce an estimate of the distribution of energy values across the generation pool, we calculate the generation

set energy probability density function by summing each generation crystal structure energy probability distribution

: Dtotal(E) =
∑Ngen

i=1 pXi
(E) Such probability measures the distribution of the energy values within the generation

pool. As the model gets more accurate, the uncertainties shrink and the energy values distribution are more precisely

localized. The advantage of having such a distribution is that we can use it to measure the number of configurations

that have energy lying within a desired energy range. To do this, it is natural to resort to the associated cumulative

distribution function. By calculating its cumulative distribution function:

Ftotal(E) = P (Dtotal(E) < e) =

∫ e

∞
Dtotal(e) de (10)

F̂total(E) =
Ftotal(E)

max(Ftotal(E))
(11)

We have an increasing function that measures how likely it is to find a structure in the generation set with energy

lower than an energy value E. This is exactly what we need to count the structures that would fall below our desired

energy window. To calculate how many structures are expected (Nexpected) to be present within the preset energy

window (Ewindow), we compute the integral of the generation set cdf function from the lowest energy value found

(offset to zero at each iteration by setting the lowest energy found so far as the reference) to Ewindow. This quantity,

multiplied by the total number of structures in the set, measures what is the chance of having left a structure within

Ewindow above the ground state. In parallel, we keep counting the number of structures sampled within the window

as Nmeasured. The convergence probability is defined by pconv = Nmeasured

Nexpected
, and once it reaches a value above pconv

(in these exercises set to 0.99) we consider the sampling exhaustive. Note how, by construction, such an estimator is

non-monotonically tending to 1, and as a result, it depends on the number of iterations and, indirectly, on the absolute

number of structures to be sampled. This trend is easily noticeable on the Roche API set, where one can observe easier

chances of missing a structure in the presence of very crowded energy ranges.
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5. GRACE WORKFLOW

5.1. Tailor made force fields

A tmff is fitted for each molecule from scratch and aims at modelling the molecular interactions in the solid. It

includes bond-increment-derived atomic point charges, isotropic van der Waals interactions (modeled by the Lennard-

Jones 9-6 potential), and anharmonic terms for intramolecular bonds, angles, inversions, and torsions. Van der Waals

parameters are precisely fitted, including off-diagonal interactions. Electrostatic interactions are enhanced using dipole

and quadrupole moments within local atomic coordinate systems. The details of the fitting operations involved in a

tailor-made force field routine are reported in Ref. Neumann (2008). In ourfentanyl exercise the accuracy of the tmff

reported in the typical grace units is expressed in energy error per atom with σ and equal to 0.0693 kcal/mol/atom,

which corresponds to a molecule error of σmol =
√
Nmolecule σ ∼ 0.5 kcal/mol per molecule.

5.2. Crystal Structure Prediction

To prevent errors in force field calculations, csp uses a careful multi-step process. First, it generates a broad range

of crystal structures using the tmff force field. Then, it selects a subset of structures for training and testing using

pbe-Neumann-Perrin energy minimizations. The training set is used in a ‘backfitting’ process to refine the force

field parameters. Accuracy is evaluated against the test set before and after to ensure improvement. If needed, the

backfitting is repeated. grace main operations are divided into three steps:

• Crystal Structure Generation: Monte Carlo parallel tempering using the freshly calculated tmff to generate

diverse crystal structures within a target energy range.

• Re-ranking: Structures are re-ranked with ab initio calculations. Statistical correlations help reduce the need

for full optimizations on every structure.

• Final Optimization: Structures within the target energy range are fully optimized with a higher accuracy (or

convergence setting) ab initio method for structural and energetic refinement.

A more detailed explanation of the grace’s crystal structure prediction algorithm can be found at Ref. Mortazavi

et al. (2019) in the supplementary information.

The generation process is carried out for each separate Z ′ value until a generation convergence threshold has been

reached. In all our exercises we have used 0.99 for Z ′ = 1 and 0.95 for Z ′ = 2. The same principle is followed

to perform the reranking, which continues until the calculated reranking convergence variable reaches the threshold.

Throughout our calculations, we have used the same convergence criteria for the reranking as well and sampled the

Z ′ = 2 space in two sequential rounds. The outcome of a completed csp consists of several information and datasets,

among which a collection of the output of the (1) generated tmff structure (which we call ‘generation set’), (2) the

reranked dataset, which contains a subset of the generation which have undergone a minimization through dft (which
we refer to when we compare our reranking landscapes in the main manuscript) and lastly (3) a refined reranked

dataset, with structures further relaxed at higher level of theory. In our case, since we mostly focused on speeding up

reranking, we only refer to the first and second datasets, not discussing the refined data. The observed convergences

in the fentanyl cases are represented in the following table:

Step Generation Reranking

Z′ = 1 0.9902 0.992

Z′ = 2 Part 1 0.9501 0.983

Z′ = 2 Part 2 0.9290 0.968

Table 1. Convergence values for fentanyl crystal structure prediction

As it can be observed in Table 1, the generation convergence of the second portion of the Z ′ = 2 space did not

reach the desired completion but was stopped due to having reached the timeout wall-time allowed for the calculation.

Nevertheless, since we are comparing reranking approaches, this difference does not affect the outcome of the main

results.
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6. DETAILS ON RESULTS

6.1. Fentanyl

The first system under study is the fentanyl molecule. This is a challenging example as the landscape produced with

grace 2.7.49 is very dense, even within the target energy window of 1 kcal/mol. In Figure 4 we report the result

of the reranked landscape. The difficulty in this example lies in the limited spread in energy for the configurations

found to be stable, with 211 structures found lying between 0.0 and 1.15 kcal/mol, and with a large amount (109)

close to the energy window border 0.9 and 1.15 kcal/mol. This makes the exercise particularly challenging from

the machine learning perspective, as high accuracy is needed from the very beginning to discriminate with sufficient

confidence structures within the energy window. The ml-reranker algorithm selects roughly 100 structures per round

(the imprecise number is dependent on the outcome of the ab initio minimization, as some configurations can become

unstable upon minimization, and these are then removed from the sampling). The trend of the residual probability, as

well as the sampling convergence probability is non-monotonic can be seen in Figure 3. Monotonicity could be enforced
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Figure 3. Left-hand side: logarithmic decay of the residual probability of finding a structure within the energy window over the
different iterations. Center: calculated convergence probability across the iterations. Right-hand side: the trend of the RMSE
calculated in the test sets at each iteration. It is a notable feature of this approach how the model confidence impacts heavily
the estimates of the probability of convergence, as seen in the dip in iterations 8 and 12.

by carrying a weight from the selection round happening before, but we observed that keeping a momentum parameter

hinders the speed of convergence. As a result, as shown in the figure 3 above one can appreciate the convergence

trends across the sampling round.

Since the geometry minimization criteria between grace and the ml-reranker are different, the resulting optimized

landscape has non-substantial differences, as can be seen in the figure below on the left. An important aspect to keep in

mind is that, while grace includes a last step of duplicate removal, our method does not remove similar configurations

- thus creating a fictitiously more populated landscape. The moment we perform a comparison based on structural

similarity with grace, we observe limited differences between structures sampled by grace and our approach. In

practice, only one configuration is not found by our proposed reranking, as shown in the main text, which is in line

with our convergence of 0.99.
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Figure 4. Crystal structure energy-density plot for the fentanyl reranking exercise, plotted only in the range below the energy
window. The circles in red correspond to structures found by our ml-reranker while the black stars correspond to the landscape
points found by grace.

6.2. Roche proprietary compounds

The dataset constructed using Roche proprietary data is built by collecting the most recent, large enough ( > 1k

reranked structures), csp exercises we have run in-house, totaling 17 entries. Each entry corresponds to a different

API candidate from the development pipeline, providing an extremely challenging dataset from both the chemistry

(e.g. differences in chemical species) and physical behavior (more or less pronounced polymorphism). A histogram

highlighting the molecular features of these 17 compounds is provided in Figure 5. The performance of the prediction

of the approach across the whole dataset is shown in the manuscript in Table 1. As stated in the main text, this does

not constitute a direct comparison of the two methods, as the reranking exercise performed in this exercise is radically

different. It is worth noting that, in general, the efficiency of the algorithm seems to appear whenever the landscape

is large enough (>1k structures to rerank). Moreover, given the wide diversity of the structures contained in this set,

the roughly comparable performances across them indicate a method that is robust to the chemical structure of the

API.
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Figure 5. Four histograms representing the distribution of (top-left) Number of hydrogen bonding donors and acceptors, (top-
right) molecular weight in g/mol, (bottom-right) number of rings in the compound (bottom-left) number of rotatable bonds.
The distribution follows the well-known trend of growing chemical complexity in small molecule drug discovery, with a significant
amount of molecules getting closer to the beyond rule of five boundaries (> 500 g/mol molecular weight), exhibiting complex
hydrogen bonding capacities and structural flexibilities.
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