Syntheses and properties of pH-directed two types of cobalt-lanthanoid heterometallic complexes constructed from 2,5-dichlorobenzoate and 1,10-phenanthroline

Yue Shen^{a,b}, Jiu-Zeng Jin^b, Zhen-Yu Yang^a, Jie Zhao^a, Bin-Qiu Liu^{a,*}, Ju-Wen Zhang^{a,*}

^aDepartment of Chemistry, Bohai University, Jinzhou 121013, P.R. China

^bDepartment of Chemistry, College of Science, Northeastern University, Shenyang 110819, P.R. China

Table S1

The SHAPE 2.1 analysis of the Sm1 ion in 2.

code	lable	shape	symmtery	distortion (τ)
1	OP-8	Octagon	D8h	31.721
2	HPY-8	Heptagonal pyramid	C7v	22.889
3	HBPY-8	Hexagonal bipyramid	D6h	16.750
4	CU-8	Cube	Oh	10.893
5	SAPR-8	Square antiprism	D4d	1.922
6	TDD-8	Triangular dodecahedron	D2d	1.575
7	JGBF-8	Johnson gyrobifastigium J26	D2d	14.185
8	JETBPY-8	Johnson elongated triangular bipyramid J14	D3h	28.150
9	JBTPR-8	Biaugmented trigonal prism J50	C2v	2.715
10	BTPR-8	Biaugmented trigonal prism	C2v	2.009
11	JSD-8	Snub diphenoid J84	D2d	3.848
12	TT-8	Triakis tetrahedron	Td	11.498
13	ETBPY-8	Elongated trigonal bipyramid	D3h	23.568

Table S2

The SHAPE 2.1 analysis of the Co1 ion in 2.

code	lable	shape	symmtery	distortion (τ)
1	PP-5	Pentagon	D5h	29.383
2	vOC-5	Vacant octahedron	C4v	2.630
3	TBPY-5	Trigonal bipyramid	D3h	2.412
4	SPY-5	Spherical square pyramid	C4v	3.159
5	JTBPY-5	Johnson trigonal bipyramid J12	D3h	4.444

Table S3

Selected bond lengths (Å) for 1–8.

1		2		3		4	
Nd1-01	2.396(2)	Sm1-O2	2.341(2)	Eu1-O1	2.382(2)	Gd1-01	2.351(2)
Nd1-O3	2.341(3)	Sm1-O3	2.472(2)	Eu1–O3	2.329(3)	Gd1-O2	2.344(2)
Nd1-O4	2.368(2)	Sm1-O6	2.371(2)	Eu1-O4	2.356(2)	Gd1-O3	2.321(2)
Nd1-07	2.361(3)	Sm1-O7	2.346(2)	Eu1–O5	2.328(3)	Gd1-O4	2.376(2)
Nd1-O10	2.337(3)	Sm1-O9	2.362(2)	Eu1–O7	2.350(2)	Gd1-O7	2.319(2)
Nd1-01#1	2.623(3)	Sm1-011	2.399(2)	Eu1-01#1	2.615(3)	Gd1-04#1	2.608(2)
Nd1-05#1	2.470(3)	Sm1-O5#1	2.380(2)	Eu1-O2#1	2.454(3)	Gd1-O6#1	2.359(2)
Nd1-06#1	2.376(3)	Sm1-O11#1	2.623(2)	Eu1-06#1	2.369(2)	Gd1-O10#1	2.445(2)
Co1-O2	2.022(3)	Co1-O1	2.019(3)	Co1-O8	2.018(3)	Co1-O5	2.025(3)

* Corresponding authors.

E-mail addresses: liubinqiu@126.com (B.-Q. Liu), zhangjw@bhu.edu.cn (J.-W. Zhang).

Co1–O8	2.016(3)	Co1–O8	2.022(3)	Co1-O9	2.018(3)	Co1–O8	2.019(3)
Co1–O9	2.023(3)	Co1-O10	2.024(3)	Co1-O10	2.014(3)	Co1–O9	2.023(3)
Co1-N1	2.070(3)	Co1-N1	2.076(3)	Co1-N1	2.073(3)	Co1-N1	2.077(3)
Co1-N2	2.147(4)	Co1-N2	2.152(3)	Co1-N2	2.153(4)	Co1-N2	2.153(3)
5		6		7		8	
Tb1-O1	2.355(3)	Dy1-O1	2.347(2)	Er1-O1	2.327(2)	Yb1-O4	2.273(3)
Tb1-O2	2.293(3)	Dy1-O3	2.316(2)	Er1-O2	2.297(3)	Yb1–O5	2.242(3)
Tb1-O4	2.328(3)	Dy1-O4	2.325(2)	Er1–O4	2.302(3)	Yb1–O7	2.266(3)
Tb1-O7	2.320(3)	Dy1-O5	2.291(2)	Er1–O5	2.272(3)	Yb1–O8	2.244(3)
Tb1-O10	2.297(3)	Dy1-O7	2.292(2)	Er1-O8	2.262(3)	Yb1-O10	2.300(3)
Tb1-O1#1	2.587(3)	Dy1-O1#1	2.590(2)	Er1-01#1	2.570(3)	Yb1-O1#1	2.280(3)
Tb1-O5#1	2.417(3)	Dy1-O2#1	2.411(2)	Er1-O3#1	2.384(3)	Yb1-O3#1	2.358(3)
Tb1-O8#1	2.340(3)	Dy1-O6#1	2.331(2)	Er1-06#1	2.311(3)	Yb1-O10#1	2.563(3)
Co1-O3	2.016(3)	Co1–O8	2.020(3)	Co1-O7	2.016(3)	Co1–O2	2.012(3)
Co1-O6	2.013(3)	Co1-O9	2.016(3)	Co1-09	2.015(3)	Co1–O6	2.011(4)
Co1-09	2.007(4)	Co1-O10	2.018(3)	Co1-O10	2.014(3)	Co1–O9	2.010(4)
Co1-N1	2.145(4)	Co1-N1	2.077(3)	Co1-N1	2.076(3)	Co1-N1	2.070(4)
Co1-N2	2.070(3)	Co1-N2	2.153(3)	Co1-N2	2.151(4)	Co1-N2	2.141(5)
Symmetry codes: for 1: #1 1 - x, 1 - y, 1 - z. For 2: #1 - x, -y, 1 - z. For 3: #1 1 - x, 1 - y, 1 - z. For 4: #1							
1 - x, $1 - y$, $1 - z$. For 5 : #1 1 - x, 1 - y, 1 - z. For 6 : #1 1 - x, 1 - y, 1 - z. For 7 : #1 1 - x, 1 - y, 1 - z. For							
8 : #1 1 - x , 1 - y , 1 - z .							

Table S4

The SHAPE 2.1 analysis of the Sm1 ion in **2a**.

code	lable	shape	symmtery	distortion (τ)
1	OP-8	Octagon	D8h	29.377
2	HPY-8	Heptagonal pyramid	C7v	21.910
3	HBPY-8	Hexagonal bipyramid	D6h	17.074
4	CU-8	Cube	Oh	10.831
5	SAPR-8	Square antiprism	D4d	1.118
6	TDD-8	Triangular dodecahedron	D2d	3.084
7	JGBF-8	Johnson gyrobifastigium J26	D2d	16.700
8	JETBPY-8	Johnson elongated triangular bipyramid J14	D3h	25.707
9	JBTPR-8	Biaugmented trigonal prism J50	C2v	3.395
10	BTPR-8	Biaugmented trigonal prism	C2v	2.402
11	JSD-8	Snub diphenoid J84	D2d	5.982
12	TT-8	Triakis tetrahedron	Td	11.618
13	ETBPY-8	Elongated trigonal bipyramid	D3h	21.430

Table S5

The SHAPE 2.1 analysis of the Co1 ion in **2a**.

code	lable	shape	symmtery	distortion (τ)
1	PP-5	Pentagon	D5h	34.158
2	vOC-5	Vacant octahedron	C4v	4.864
3	TBPY-5	Trigonal bipyramid	D3h	0.734
4	SPY-5	Spherical square pyramid	C4v	2.771

Table S6

3.493

D3h

Selected bond lengths (Å) for 1a-3a.							
1a	L	2a		3 a			
Nd1-01	2.569(3)	Sm1-O1	2.441(2)	Eu1–O1	2.5217(19)		
Nd1-O2	2.475(3)	Sm1-O2	2.452(2)	Eu1–O2	2.441(2)		
Nd1-O3	2.465(3)	Sm1-O3	2.371(2)	Eu1–O3	2.429(2)		
Nd1-O4	2.410(3)	Sm1-O5	2.536(2)	Eu1–O5	2.4178(19)		
Nd1-08	2.453(3)	Sm1-O7	2.385(2)	Eu1-O6	2.375(2)		
Nd1-010	2.476(3)	Sm1-09	2.425(2)	Eu1–O9	2.361(2)		
Nd1-O6#1	2.433(3)	Sm1-O6#1	2.436(2)	Eu1-04#1	2.3921(18)		
Nd1-O10#1	2.476(3)	Sm1-O8#1	2.406(2)	Eu1-O8#1	2.4249(19)		
Co1-O1	2.025(3)	Co1–O4	2.011(2)	Co1–O1	2.034(2)		
Co1–O5	2.012(3)	Co1–O5	2.034(2)	Co1–O7	1.985(2)		
Co1–O7	1.986(4)	Co1-O10	1.984(2)	Co1-O10	2.012(3)		
Co1-N1	2.068(3)	Co1-N1	2.070(3)	Co1-N1	2.070(3)		
Co1-N2	2.138(4)	Co1-N2	2.140(3)	Co1-N2	2.137(3)		
Symmetry codes: for 1a : #1 1 - x, 1 - y, 1 - z. For 2a : #1 1 - x, 1 - y, 1 - z. For 3a : #1 1 - x, 1 - y, 1 - z.							

Fig. S1. Three types of coordination modes of the 2,5-DCB anion in 2.

Fig. S2. Coordination geometries of the metal ions in 2.

Fig. S3. Four types of coordination modes of the 2,5-DCB anion in 2a.

Fig. S4. Coordination geometries of the metal ions in 2a.

Fig. S5. Simulated PXRD pattern of 2 and as-synthesized PXRD patterns of 1-8.

Fig. S6. Simulated PXRD pattern of 2a and as-synthesized PXRD patterns of 1a-3a.

Fig. S8. TG curves of 1a–3a and DTA curve of 2a.

Fig. S9. Emission decay of 3 measured with $\lambda_{ex} = 351$ nm and $\lambda_{em} = 614$ nm. Solid line is a fit to the biexponential function.

Fig. S10. Emission decay of 3a measured with $\lambda_{ex} = 304$ nm and $\lambda_{em} = 615$ nm. Solid line is a fit to the biexponential function.

Fig. S11. *M* versus *H* plots for 1, 2, 1a, 2a, and 4–8 at 2 K.

Fig. S12. Temperature dependence of the in-phase (χ') (top) and out-of-phase (χ'') (bottom) AC magnetic susceptibilities for 6 under 2000 Oe DC field at different frequencies.

Fig. S13. Temperature dependence of the out-of-phase (χ'') AC magnetic susceptibilities for 6 under 2000 Oe DC field above 100 Hz.

Fig. S15. FT-IR spectra of 1a–3a.