Crystal structures of potassium and cesium salts of adenine: the role of alkali cations

Sarabjeet Kaur^a, Jeremy Harvey^b, Luc Van Meervelt^c, Christine Kirschhock^{a,*}

^aCentre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems (M²S), Katholieke Universiteit Leuven, Celestijnenlaan 200f - box 2461, 3001 Leuven, Belgium.

^bQuantum Chemistry and Physicochemistry, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200f – box 2404, 3001 Leuven, Belgium.

^cBiochemistry, Molecular and Structural Biology, Department of Chemistry, Celestijnenlaan 200f - box 2404, Katholieke Universiteit Leuven, 3001 Leuven, Belgium.

Figure S1. ORTEP drawings showing 50% probability ellipsoids of asymmetric units of (a) K-Adenine ($K^+C_5H_4N_5^-$) and, (b) Cs-Adenine ($Cs^+C_5H_4N_5^-$).

Figure S2. Anisotropic distortion and coordination environment of Cs2 in Cs-Adenine $(Cs^+C_5H_4N_5^-)$.

Figure S3. B3LYP-D3BJ/6-311+G(d) optimized geometries of (a) Na-Guanine, (b) K-Guanine, (c) Cs-Guanine, (d) Na-Adenine, (e) K-Adenine, and (f) Cs-Adenine.

Chemical formula	$K^{+}C_{5}H_{4}N_{5}^{-}$	$Cs^+C_5H_4N_5^-$
M _r	173.23	267.04
Crystal system, space group	Monoclinic, $P2_1$	Orthorhombic, Pbcn
Temperature (K)	293(2)	293(2)
a (Å)	6.6480(6)	12.7149(8)
b (Å)	7.4057(5)	11.1762(8)
c (Å)	7.1220(7)	10.8144(9)
α (°)	90	90
β (°)	113.802(11)	90
γ (°)	90	90
Volume (Å ³)	320.81(5)	1536.77(19)
Z	2	8
Radiation type	Mo K α ($\lambda = 0.71073$ Å)	Mo K α ($\lambda = 0.71073$ Å)
μ (mm ⁻¹)	0.753	4.757
ρ _{calc} g/cm ³	1.793	2.308
Crystal size/mm ³	0.4 imes 0.25 imes 0.1	0.5 imes 0.5 imes 0.3
Data Collection		
20 range for data collection/°	6.252 to 52.652	6.144 to 52.712
Index ranges	$-8 \le h \le 8, -9 \le k \le 9, -8 \le 1 \le 8$	$-15 \le h \le 15, -13 \le k \le 13, -13 \le l \le 13$
Reflections collected	3436	8275
Independent reflections	1286 [$R_{int} = 0.0242$, $R_{sigma} = 0.0296$]	1571 [$R_{int} = 0.0365$, $R_{sigma} = 0.0258$]
Data/restraints/parameters	1286/1/112	1571/0/108
Goodness-of-fit on F ²	1.064	1.113
Final R indexes [I>=2σ (I)]	$R_1 = 0.0244, wR_2 = 0.0644$	$R_1 = 0.0551, wR_2 = 0.1358$
Final R indexes [all data]	$R_1 = 0.0265, wR_2 = 0.0650$	$R_1 = 0.0625, wR_2 = 0.1415$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.19	2.78/-3.40

Table S1. Crystal data, data collection and structure refinement details

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for K⁺C₅H₄N₅⁻. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	х	у	Z	U(eq)
N1	2301(4)	3385(4)	3548(3)	27.0(5)
C2	4496(5)	3138(5)	288(4)	27.2(6)
N3	6018(4)	3444(3)	6141(4)	26.6(5)
C4	5149(4)	4079(4)	7459(4)	21.6(6)
C5	2896(4)	4301(4)	6914(4)	21.7(6)
C6	1471(5)	3965(4)	4898(5)	24.2(6)
N7	2585(4)	4936(4)	8614(4)	28.1(5)
C8	4661(5)	5076(4)	10007(5)	28.5(6)
N9	6293(4)	4583(3)	9437(4)	26.3(5)
N10	-716(4)	4250(5)	4152(4)	40.3(8)
K11	10099.4(9)	6883.0(11)	10565.3(8)	29.66(19)

Table S3. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for $K^+C_5H_4N_5^-$.

Atom	х	у	Z	U(eq)
H2	5070(60)	2670(50)	3350(60)	36
H8	4940(60)	5530(50)	11320(60)	36
H10A	-1230(60)	4490(50)	4950(70)	36
H10B	-1690(60)	3850(50)	2730(60)	36

Table S4. Anisotropic Displacement Parameters (Å²×10³) for K⁺C₅H₄N₅⁻. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

anopiae		enponent tanes in				
Atom	n U ₁₁	U_{22}	U_{33}	U ₂₃	U ₁₃	U_{12}
N1	21.8(12)	39.6(14)	20.1(10)	-3.8(11)	9.0(10)	-2.4(11)
C2	24.4(14)	32.1(15)	28.0(15)	-4.3(12)	13.7(13)	-1.9(12)
N3	19.6(12)	32.1(13)	28.6(12)	-0.8(11)	10.4(10)	1.8(10)
C4	17.5(13)	21.5(12)	23.9(14)	1.7(11)	6.3(12)	0.1(10)
C5	18.8(13)	26.0(13)	20.8(14)	0.4(10)	8.6(12)	-0.1(11)
C6	16.9(13)	34.4(16)	19.8(13)	-0.7(12)	5.8(11)	-1.3(11)
N7	23.2(12)	40.0(14)	19.9(11)	-4.6(12)	7.4(10)	0.6(11)
C8	27.2(15)	33.4(14)	19.9(12)	-1.0(13)	4.4(12)	2.1(12)
N9	20.1(12)	30.3(13)	23.6(12)	0.4(10)	3.6(11)	-0.5(10)
N10	16.1(12)	81(2)	21.8(13)	-9.2(13)	5.5(11)	1.0(14)
K11	23.8(3)	31.6(3)	30.3(3)	-0.7(3)	7.6(2)	-2.3(3)

Table S5. Bond Lengths for K⁺C₅H₄N₅⁻.

		e			
Atom	Atom	Length/Å	Atom	Atom	Length/Å
N1	C2	1.349(4)	C8	N9	1.353(4)
N1	C6	1.357(3)	C8	K11 ⁵	3.481(3)
N1	K11 ¹	2.931(2)	N9	K11 ³	3.123(2)
N1	K11 ²	3.295(3)	N9	K11	2.883(2)
C2	N3	1.319(4)	N10	K11 ²	3.426(3)
N3	C4	1.369(4)	K11	N16	3.295(3)
N3	K11 ³	2.935(3)	K11	N1 ⁷	2.931(2)
C4	C5	1.397(4)	K11	N3 ⁸	2.935(3)
C4	N9	1.355(4)	K11	C48	3.319(3)
C4	K11 ³	3.319(3)	K11	N7 ⁹	3.079(3)

C5	C6	1.387(4)	K11	$N7^{10}$	2.932(2)
C5	N7	1.389(4)	K11	C8 ¹⁰	3.481(3)
C6	N10	1.348(4)	K11	N98	3.123(3)
N7	C8	1.340(4)	K11	N10 ⁶	3.426(3)
N7	K11 ⁴	3.079(3)	K11	K11 ³	3.7804(3)
N7	K11 ⁵	2.932(2)	K11	K11 ⁸	3.7804(3)
11-X,-1	l/2+Y,1-Z;	² -1+X,+Y,-1+Z;	; ³ 2-X,-1/2+Y	,2-Z; ⁴ 1-X	X,-1/2+Y,2-Z; ⁵ 1+X,+Y,+Z; ⁶ 1+X,+Y,1+Z; ⁷ 1-X,1/2+Y,1-Z; ⁸ 2-
X 1/0 -	V 0 7 91 1	V 1/2 V 2 7 101	1 37 1 37 1 77		

X,1/2+Y,2-Z; ⁹1-X,1/2+Y,2-Z; ¹⁰1+X,+Y,+Z

Table S6. Bond Angles for $K^{\!+\!}C_5H_4N_5^{-}$.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	N1	C6	$116.8(2) N1^{6}$	K11	K11 ⁸	57.13(5)
C2	N1	K11 ¹	119.20(19)	N38	K11	N17	77.05(6)
C2	N1	K11 ²	113.94(17)	N38	K11	C48	24.30(7)
C6	N1	K11 ¹	90.36(17)	N38	K11	$N7^{10}$	87.08(7)
C6	N1	K11 ²	127.96(18)	N38	K11	C89	73.56(7)
K11 ²	N1	K11 ¹	74.52(6)N3 ⁸	K11	N98	47.18(7)
N3	C2	N1	129.8(2) N3 ⁸	K11	N10 ⁷	88.92(7)
C2	N3	C4	$112.3(2)N3^{8}$	K11	K118	74.23(5)
C^2	N3	K11 ³	14354(19)	N38	K11	K11 ³	120.00(6)
C4	N3	K11 ³	93 76(17)	$C4^8$	K11	$C8^9$	60.85(7)
N3	C4	C5	$1235(3)C4^{8}$	K11	N10 ⁷	111 89(7)
N3	C4	K113	61.94(15)	$C4^8$	K11	K113	121.05(5)
C5	C4	K11 ³	$154\ 90(19)$	$C4^8$	K11	K118	63.62(5)
N9	C4	N3	$126 3(2) N7^{1}$	K11	N17	126 55(6)
NO	C_{-}	N3 C5	120.3(2) N79	K11 V11	N17	74 35(6)
IN9 NO	C4	CJ V113	$110.2(2) \text{IN}/^{2}$	N79		74.55(0 N28	$\frac{1}{05}$
N9 CC	C4		09.80(13) 119.2(2) N79	N/2	K11 C48	N3° 70 (2(7	95.20(7)
	C5	C4	$118.3(2) \text{ IN } /^{2}$	KII V11	C4°	/9.03(/)
C6	05	N/	133.1(2) N/10	KII K11	C4°	94.8/(/)
N/	C5	C4	$108.5(3) N7^{9}$	KII K11	N/10	158.74(()
NI	C6	C5	$119.2(2) N^{79}$	KII	C89	22.06(7)
N10	C6	NI	$116.9(3) \text{ N}7^{10}$	KII	C89	154.46(8)
N10	C6	C5	123.9(3)N7 ⁹	K11	N98	74.62(7)
C5	N7	K11 ⁴	152.87(19)	$N7^{10}$	K11	N9 ⁸	91.95(7)
C5	N7	K11 ⁵	102.63(18)	$N7^{10}$	K11	N10 ⁷	89.90(7)
C8	N7	C5	101.5(2) N7 ⁹	K11	N10 ⁷	111.25(8)
C8	N7	K11 ⁵	114.8(2)N7 ⁹	K11	K11 ³	52.78(5)
C8	N7	K11 ⁴	102.71(18)	N79	K11	K11 ⁸	111.02(6)
K11 ⁴	N7	K11 ⁵	77.91(6)N7 ¹⁰	K11	K11 ⁸	49.31(5)
N7	C8	N9	117.9(3)N7 ¹⁰	K11	K11 ³	141.87(5)
N7	C8	K11 ⁴	55.24(15)	C89	K11	K11 ⁸	108.02(6)
N9	C8	K11 ⁴	$168.2(2)C8^9$	K11	K11 ³	63.66(6)
C4	N9	K11 ³	86.10(16)	N9	K11	N1 ⁶	83.28(7)
C4	N9	K11	120.90(17)	N9	K11	N17	80.03(7)
C8	N9	C4	101.8(2)N9 ⁸	K11	N17	111.23(6)
C8	N9	K11	118.47(19)	N9	K11	N38	147.73(7)
C8	N9	K11 ³	151.9(2)N9	K11	C48	170.40(7)
K11	N9	K11 ³	77.91(6)N9 ⁸	K11	$C4^8$	24.04(6)
C6	N10	K11 ¹	85.00(18)	N9	K11	N7 ¹⁰	88.63(7)
N16	K11	N17	149 74(8)	N9	K11	N7 ⁹	100.16(7)
N16	K11	N38	126 70(8)	N98	K11	$C8^9$	6271(7)
N17	K11	$C4^8$	90 73(7) N9	K11	$C8^9$	116 63(8)
N16	K11	C^{48}	106 19(7)	N0	K11	N08	165.05(3)
N16	K11	N79	84 06(7) NO	K11	N107	50 00(7	105.05(5)
N16	K11	N710	77.74(6) N08	K11 K11	N107	135 8/1	/ 7)
1N1° N16	K11 V11	C 89	100.26(7)	N08	IN10 ⁷	155.04(1718	19 18 21(5)
1N1° N17		C^{0}	100.30(7)	1N9° 1/11	N11 V118	LII* 124 424	+0.21(J)
IN1 '		U87	03.83(7)N9	KII V11	K11° V112	124.62(5)
IN I ^o	KH	N9°	82.24(7)N98	K11	KIIS	126.00(5)

N1 ⁷	K11	N10 ⁷	40.06(6)N9	K11	K11 ³	53.88(5)	
N16	K11	N10 ⁷	140.80(7)	N10 ⁷	K11	C89	105.87(8)
$N1^6$	K11	K11 ³	101.58(6)	N10 ⁷	K11	K11 ⁸	135.55(6)
$N1^7$	K11	K11 ³	48.36(4) N10 ⁷	K11	K11 ³	66.35(6)	
$N1^7$	K11	K11 ⁸	151.12(5)	K11 ³	K11	K11 ⁸	156.76(3)
1-1+X,+	-Y,-1+Z;	² 1-X,-1/2+	Y,1-Z; ³ 2-X,-1/2+Y	(,2-Z; ⁴ -1-	X,+Y,+Z	; ⁵ 1-X,-1/2+	Y,2-Z; 61-X,1/2+Y,1-Z; 71+X,+Y,1+Z; 82-
X,1/2+	Y,2-Z; ⁹ 1-	+X,+Y,+Z	; ¹⁰ 1-X,1/2+Y,2-Z				

Table S	Table S7. Torsion Angles for $K^+C_5H_4N_5^-$.								
А	В	С	D	Angle/°	А	В	С	D	Angle/°
N1	C2	N3	C4	1.2(5)	C6	C5	N7	K11 ⁴	-22.1(7)
N1	C2	N3	K11 ¹	133.6(3)	N7	C5	C6	N1	178.0(3)
N1	C6	N10	K11 ²	-52.5(3)	N7	C5	C6	N10	0.8(6)
C2	N1	C6	C5	1.3(4)	N7	C8	N9	C4	0.4(4)
C2	N1	C6	N10	178.6(3)	N7	C8	N9	K11	135.6(2)
C2	N3	C4	C5	2.5(4)	N7	C8	N9	K11 ¹	-103.8(4)
C2	N3	C4	N9	-177.3(3)	N9	C4	C5	C6	175.8(2)
C2	N3	C4	K11 ¹	153.9(3)	N9	C4	C5	N7	-1.2(3)
N3	C4	C5	C6	-4.1(4)	K11 ⁵	N1	C2	N3	-171.2(3)
N3	C4	C5	N7	179.0(3)	K11 ²	N1	C2	N3	103.8(3)
N3	C4	N9	C8	-179.6(3)	K11 ²	N1	C6	C5	-122.1(2)
N3	C4	N9	K11	46.5(3)	K11 ⁵	N1	C6	C5	167.4(2)
N3	C4	N9	K11 ¹	-26.9(3)	K11 ²	N1	C6	N10	55.3(3)
C4	C5	C6	N1	1.9(4)	K11 ⁵	N1	C6	N10	-15.2(4)
C4	C5	C6	N10	-175.2(3)	$K11^{1}$	N3	C4	C5	-151.4(2)
C4	C5	N7	C8	1.3(3)	K11 ¹	N3	C4	N9	28.8(3)
C4	C5	N7	K11 ³	-117.7(2)	K11 ¹	C4	C5	C6	-98.8(5)
C4	C5	N7	K11 ⁴	154.2(3)	K11 ¹	C4	C5	N7	84.2(5)
C5	C4	N9	C8	0.5(3)	K11 ¹	C4	N9	C8	-152.7(2)
C5	C4	N9	K11	-133.36(19)	K11 ¹	C4	N9	K11	73.41(13)
C5	C4	N9	K11 ¹	153.2(2)	K11 ⁴	N7	C8	N9	-168.8(2)
C5	C6	N10	K11 ²	124.7(3)	K11 ³	N7	C8	N9	108.8(3)
C5	N7	C8	N9	-1.0(4)	K11 ³	N7	C8	K11 ⁴	-82.38(13)
C5	N7	C8	K11 ⁴	167.7(3)	K11 ⁴	C8	N9	C4	-51.2(11)
C6	N1	C2	N3	-3.1(5)	K11 ⁴	C8	N9	K11 ¹	-155.3(8)
C6	C5	N7	C8	-175.1(3)	K11 ⁴	C8	N9	K11	84.1(11)
C6	C5	N7	K11 ³	66.0(4)					

¹2-X,-1/2+Y,2-Z; ²-1+X,+Y,-1+Z; ³1-X,-1/2+Y,2-Z; ⁴-1+X,+Y,+Z; ⁵1-X,-1/2+Y,1-Z

Table S8. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for Cs⁺C₅H₄N₅⁻. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	Х	У	Z	U(eq)
N1	3652(5)	2535(6)	19(7)	37.6(15)
C2	2607(6)	2688(8)	-50(8)	42.4(19)
N3	1861(5)	2093(6)	549(7)	37.5(15)
C4	2260(5)	1252(7)	1339(7)	33.6(17)
C5	3328(6)	1026(7)	1494(7)	34.2(16)
C6	4040(6)	1690(7)	792(7)	34.3(16)

3486(6)	134(6)	2330(7)	42.2(17)
2477(7)	-111(8)	2657(8)	42.9(19)
1708(5)	519(6)	2084(7)	39.6(15)
5104(5)	1527(8)	839(8)	48.3(19)
5000	-2088.5(6)	2500	33.2(2)
0	0	0	99.8(6)
	3486(6) 2477(7) 1708(5) 5104(5) 5000 0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table S9. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for $Cs^+C_5H_4N_5^-$.

х	у	Z	U(eq)
2376.51	3285.73	-583.54	51
2320.55	-687.33	3249.34	51
5400(80)	960(90)	1380(90)	58
5620(80)	1970(80)	440(90)	58
	x 2376.51 2320.55 5400(80) 5620(80)	x y 2376.51 3285.73 2320.55 -687.33 5400(80) 960(90) 5620(80) 1970(80)	xyz2376.513285.73-583.542320.55-687.333249.345400(80)960(90)1380(90)5620(80)1970(80)440(90)

Table S10. Anisotropic Displacement Parameters (Å²×10³) for Cs⁺C₅H₄N₅⁻. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

anspiaceine	ent fuetor expone	in takes the form		1 · 2111. u 0 0	12].	
Atom	U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N1	25(3)	42(4)	45(4)	7(3)	3(3)	2(3)
C2	30(4)	47(5)	51(5)	4(4)	3(4)	3(4)
N3	21(3)	47(4)	45(4)	-1(3)	1(3)	0(3)
C4	21(3)	38(4)	42(4)	-13(3)	-6(3)	6(3)
C5	24(3)	38(4)	41(4)	-4(3)	-1(3)	3(3)
C6	23(3)	46(4)	34(4)	-1(3)	1(3)	-1(3)
N7	37(4)	43(4)	46(4)	12(3)	-5(3)	4(3)
C8	33(4)	44(5)	51(5)	9(4)	3(4)	3(4)
N9	30(3)	43(4)	46(4)	0(3)	-3(3)	-3(3)
N10	20(3)	71(5)	54(5)	14(4)	2(3)	2(3)
Cs11	26.5(4)	36.4(4)	36.7(4)	0	-1.5(3)	0
Cs12	58.2(6)	42.2(5)	199.0(15)	-38.9(7)	-74.9(8)	12.7(4)

Table S11. Bond Lengths for $Cs^+C_5H_4N_5^-$.

1 abic .	$\mathbf{J}\mathbf{I}\mathbf{I}\mathbf{D}\mathbf{U}\mathbf{I}$	ia Lenguis foi es estia	N 5 ·		
Atom	Atom	Length/Å	Atom	Atom	Length/Å
N1	C2	1.343(10)	N10	Cs11 ¹	3.668(8)
N1	C6	1.354(10)	Cs11	$N1^1$	3.257(7)
N1	Cs11 ¹	3.257(7)	Cs11	N14	3.257(7)
N1	$Cs12^2$	3.245(7)	Cs11	N3 ⁵	3.299(6)
C2	N3	1.327(10)	Cs11	N3 ⁶	3.299(6)
N3	C4	1.367(10)	Cs11	C4 ⁵	3.644(7)
N3	Cs11 ³	3.299(6)	Cs11	$C4^{6}$	3.644(7)
N3	Cs12	3.380(6)	Cs11	N7 ⁷	3.148(7)
C4	C5	1.391(10)	Cs11	N96	3.474(7)
C4	N9	1.347(10)	Cs11	N9 ⁵	3.474(7)
C4	Cs11 ³	3.644(7)	Cs11	N10 ¹	3.668(8)
C4	Cs12	3.509(7)	Cs11	N10 ⁴	3.668(8)
C5	C6	1.396(11)	Cs12	N1 ⁸	3.245(7)
C5	N7	1.361(10)	Cs12	N16	3.245(7)
C6	N10	1.365(9)	Cs12	N3 ⁹	3.380(6)
C6	Cs111	3.790(8)	Cs12	C49	3.509(7)
N7	C8	1.358(11)	Cs12	N9 ⁹	3.183(7)
N7	Cs11	3.148(7)	Cs12	Cs11 ¹⁰	4.2306(6)
C8	N9	1.355(11)	Cs12	Cs11 ³	4.2306(6)

C8 Cs11	3.899(9)	Cs12	Cs1211	5.4072(5)	
---------	----------	------	--------	-----------	--

N9 $Cs11^3$ 3.474(7) Cs12 $Cs12^{12}$ 5.4072(5)

N9 Cs12 3.183(7)

¹1-X,-Y,-Z; ²1/2+X,1/2-Y,-Z; ³-1/2+X,1/2+Y,1/2-Z; ⁴+X,-Y,1/2+Z; ⁵1/2+X,-1/2+Y,1/2-Z; ⁶1/2-X,-1/2+Y,+Z; ⁷1-X,+Y,1/2-Z; ⁸-1/2+X,1/2-Y,-Z; ⁹-X,-Y,-Z; ¹⁰1/2-X,-1/2-Y,-1/2+Z; ¹¹-X,+Y,1/2-Z; ¹²-X,+Y,-1/2-Z

Table S12. Bond Angles for $Cs^+C_5H_4N_5^-$.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	N1	C6	119.0(7)	N7	Cs11	C4 ⁵	84.20(18)
C2	N1	Cs11 ¹	119.6(5)	N7 ⁷	Cs11	C4 ⁶	84.20(18)
C2	N1	Cs12 ²	114.5(5)	N7	Cs11	C4 ⁶	154.72(19)
C6	N1	Cs11 ¹	102.6(5)	$N7^7$	Cs11	N7	75.8(3)
C6	N1	Cs12 ²	113.8(5)	N7	Cs11	N9 ⁵	102.55(17)
Cs12 ²	N1	Cs11 ¹	81.19(15)	N7 ⁷	Cs11	N9 ⁵	175.72(18)
N3	C2	N1	128.0(8)	N7	Cs11	N96	175.72(18)
C2	N3	C4	112.6(7)	N7 ⁷	Cs11	N96	102.55(17)
C2	N3	Cs11 ³	133.3(5)	N7	Cs11	N10 ⁴	86.82(18)
C2	N3	Cs12	139.6(6)	N7	Cs11	N10 ¹	77.60(18)
C4	N3	Cs11 ³	93.3(4)	N7 ⁷	Cs11	N10 ¹	86.82(18)
C4	N3	Cs12	83.9(4)	N7 ⁷	Cs11	N10 ⁴	77.60(18)
Cs11 ³	N3	Cs12	78.59(13)	N96	Cs11	C4 ⁶	21.65(17)
N3	C4	C5	124.2(7)	N9 ⁵	Cs11	C4 ⁶	98.38(17)
N3	C4	Cs11 ³	64.7(4)	N96	Cs11	C4 ⁵	98.38(17)
N3	C4	Cs12	73.3(4)	N9 ⁵	Cs11	C4 ⁵	21.65(17)
C5	C4	Cs11 ³	145.1(5)	N9 ⁵	Cs11	N96	79.3(2)
C5	C4	Cs12	141.0(5)	N9 ⁵	Cs11	N10 ⁴	106.36(17)
N9	C4	N3	126.8(7)	N96	Cs11	N10 ¹	106.36(17)
N9	C4	C5	109.0(7)	N96	Cs11	N10 ⁴	88.96(17)
N9	C4	Cs11 ³	72.1(4)	N9 ⁵	Cs11	N10 ¹	88.96(17)
N9	C4	Cs12	65.0(4)	N10 ⁴	Cs11	N10 ¹	160.3(3)
Cs12	C4	Cs11 ³	72.50(13)	N1 ⁵	Cs12	N18	180.00(18)
C4	C5	C6	118.1(7)	N1 ⁵	Cs12	N3 ⁹	77.48(15)
N7	C5	C4	110.9(7)	N18	Cs12	N3 ⁹	102.52(15)
N7	C5	C6	130.9(7)	N18	Cs12	N3	77.48(15)
N1	C6	C5	118.0(7)	N1 ⁵	Cs12	N3	102.52(15)
N1	C6	N10	118.5(7)	N1 ⁵	Cs12	C4	84.46(16)
N1	C6	Cs11 ¹	57.0(4)	N18	Cs12	C49	84.46(16)
C5	C6	Cs11 ¹	141.5(5)	N1 ⁵	Cs12	C49	95.54(16)
N10	C6	C5	123.5(8)	N1 ⁸	Cs12	C4	95.54(16)
N10	C6	Cs11 ¹	74.5(5)	N1 ⁸	Cs12	Cs11 ¹⁰	130.47(12)
C5	N7	Cs11	135.0(5)	N1 ⁵	Cs12	Cs11 ³	130.47(12)
C8	N7	C5	100.4(7)	N18	Cs12	Cs11 ³	49.53(12)
C8	N7	Cs11	113.8(5)	N1 ⁵	Cs12	Cs11 ¹⁰	49.53(12)
N7	C8	Cs11	47.6(4)	N1 ⁵	Cs12	Cs12 ¹¹	90.36(12)
N9	C8	N7	117.2(7)	N18	Cs12	$Cs12^{12}$	90.36(12)
N9	C8	Cs11	150.3(6)	N1 ⁵	Cs12	$Cs12^{12}$	89.64(12)
C4	N9	C8	102.3(6)	N1 ⁸	Cs12	$Cs12^{11}$	89.64(12)
C4	N9	Cs11 ³	86.3(4)	N3 ⁹	Cs12	N3	180.0
C4	N9	Cs12	92.4(4)	N3	Cs12	C4	22.80(17)
C8	N9	$Cs11^3$	142.4(6)	N39	Cs12	C4	157.20(17)
C8	N9	Cs12	136.2(6)	N3 ⁹	Cs12	C49	22.80(17)
Cs12	N9	Cs12	78.78(15)	N3	Cs12	C49	157.20(17)
C6	N10	$Cs11^1$	84.5(5)	N3 ⁹	Cs12	Cs11 ¹⁰	49.86(11)
N11	Cs11	N1 ⁴	162.4(2)	N3 ⁹	Cs12	Cs11 ³	130.14(11)

N14	Cs11	N3 ⁵	96.61(16)	N3	Cs12	Cs11 ³	49.86(11)
$N1^1$	Cs11	N3 ⁵	78.47(16)	N3	Cs12	$Cs11^{10}$	130.14(11)
$N1^1$	Cs11	N36	96.61(16)	N3	Cs12	Cs1211	100.12(12)
N14	Cs11	N36	78.47(16)	N3 ⁹	Cs12	Cs1211	79.88(12)
$N1^1$	Cs11	C4 ⁵	92.79(16)	N39	Cs12	Cs1212	100.12(12)
N14	Cs11	C4 ⁶	92.79(16)	N3	Cs12	Cs1212	79.88(12)
N14	Cs11	C4 ⁵	78.20(16)	C49	Cs12	C4	180.0
$N1^1$	Cs11	C4 ⁶	78.20(16)	C4	Cs12	Cs11 ³	55.22(11)
$N1^1$	Cs11	N9 ⁵	95.91(17)	C49	Cs12	$Cs11^{10}$	55.22(11)
$N1^1$	Cs11	N96	70.21(17)	C4	Cs12	$Cs11^{10}$	124.78(11)
N14	Cs11	N9 ⁵	70.21(17)	C49	Cs12	Cs11 ³	124.78(11)
N14	Cs11	N96	95.91(17)	C49	Cs12	Cs1212	114.37(13)
$N1^1$	Cs11	N10 ¹	38.88(16)	C49	Cs12	Cs1211	65.63(13)
N14	Cs11	N10 ⁴	38.88(16)	C4	Cs12	Cs1212	65.63(13)
$N1^1$	Cs11	N10 ⁴	146.18(15)	C4	Cs12	Cs1211	114.37(13)
N14	Cs11	N10 ¹	146.18(15)	N9	Cs12	N1 ⁵	77.88(17)
N3 ⁵	Cs11	N36	147.8(2)	N9	Cs12	N18	102.12(17)
N3 ⁵	Cs11	C4 ⁶	130.15(17)	N99	Cs12	N1 ⁵	102.12(17)
N3 ⁵	Cs11	C4 ⁵	22.00(17)	N99	Cs12	N1 ⁸	77.88(17)
N3 ⁶	Cs11	C4 ⁵	130.15(17)	N9	Cs12	N3	43.27(17)
N3 ⁶	Cs11	C4 ⁶	22.00(17)	N9 ⁹	Cs12	N3	136.73(17)
N3 ⁶	Cs11	N9 ⁵	108.52(16)	N9	Cs12	N3 ⁹	136.73(17)
N3 ⁶	Cs11	N96	108.52(16)	N9 ⁹	Cs12	N3 ⁹	43.27(17)
N3 ⁶	Cs11	N96	41.89(17)	N99	Cs12	C49	22.55(18)
N3 ⁵	Cs11	N9 ⁵	41.89(17)	N99	Cs12	C4	157.45(18)
N3 ⁵	Cs11	N10 ¹	52.56(16)	N9	Cs12	C4	22.55(18)
N3 ⁵	Cs11	N10 ⁴	134.66(15)	N9	Cs12	C49	157.45(18)
N3 ⁶	Cs11	N10 ¹	134.66(15)	N9	Cs12	N9 ⁹	180.0
N3 ⁶	Cs11	N10 ⁴	52.56(16)	N9	Cs12	Cs11 ¹⁰	126.35(13)
C4 ⁵	Cs11	$C4^{6}$	118.8(2)	N9	Cs12	Cs11 ³	53.65(13)
C4 ⁶	Cs11	N10 ⁴	73.70(17)	N99	Cs12	Cs11 ³	126.35(13)
C4 ⁶	Cs11	N10 ¹	117.06(16)	N99	Cs12	$Cs11^{10}$	53.65(13)
C4 ⁵	Cs11	N10 ¹	73.70(17)	N99	Cs12	Cs1211	44.92(13)
C4 ⁵	Cs11	N10 ⁴	117.06(16)	N9	Cs12	Cs1211	135.08(13)
N7 ⁷	Cs11	N14	113.18(18)	N99	Cs12	Cs1212	135.08(13)
N7 ⁷	Cs11	$N1^1$	81.25(18)	N9	Cs12	Cs1212	44.92(13)
N7	Cs11	$N1^1$	113.18(18)	Cs11 ³	Cs12	Cs11 ¹⁰	180.0
N7	Cs11	$N1^4$	81.25(18)	Cs11 ³	Cs12	Cs1211	129.722(7)
N7 ⁷	Cs11	N3 ⁶	75.09(18)	Cs11 ³	Cs12	$Cs12^{12}$	50.278(7)
N7	Cs11	N3 ⁵	75.09(18)	$Cs11^{10}$	Cs12	Cs1211	50.278(7)
N7	Cs11	N3 ⁶	134.02(18)	$Cs11^{10}$	Cs12	$Cs12^{12}$	129.722(7)
N7 ⁷	Cs11	N3 ⁵	134.02(18)	$Cs12^{12}$	Cs12	Cs1211	180.0
N77	C_{c11}	C^{45}	154.72(10)				

 $\begin{array}{c} N7^7 \quad Cs11 \quad C4^5 \quad 154.72(19) \\ {}^{11}-X,-Y,-Z; \, {}^{2}1/2+X,1/2-Y,-Z; \, {}^{3}-1/2+X,1/2+Y,1/2-Z; \, {}^{4}+X,-Y,1/2+Z; \, {}^{5}1/2-X,-1/2+Y,+Z; \, {}^{6}1/2+X,-1/2+Y,1/2-Z; \, {}^{7}1-X,+Y,1/2-Z; \, {}^{8}-1/2+X,1/2-Y,-Z; \, {}^{9}-X,-Y,-Z; \, {}^{10}1/2-X,-1/2-Y,-1/2+Z; \, {}^{11}-X,+Y,-1/2-Z; \, {}^{12}-X,+Y,1/2-Z; \, {}^{12}-X,-Y,-Z; \, {}^{12}-X$

Table S13. Torsion Angles for $Cs^+C_5H_4N_5^-$.						
А	В	С	D	Angle/°		
N1	C2	N3	C4	1.6(13)		
N1	C2	N3	Cs11 ¹	120.1(8)		
N1	C2	N3	Cs12	-106.5(10)		
N1	C6	N10	Cs11 ²	-37.4(7)		
C2	N1	C6	C5	-0.8(12)		
C2	N1	C6	N10	178.9(8)		
C2	N1	C6	Cs11 ²	134.6(8)		
C2	N3	C4	C5	-0.7(11)		
C2	N3	C4	N9	179.0(8)		
C2	N3	C4	Cs11 ¹	140.2(7)		
C2	N3	C4	Cs12	-141.7(7)		
N3	C4	C5	C6	-0.7(12)		
N3	C4	C5	N7	-179.4(7)		
N3	C4	N9	C8	-179.6(8)		
N3	C4	N9	Cs111	-36.6(7)		
N3	C4	N9	Cs12	42.0(8)		
C4	C5	C6	N1	1.5(11)		
C4	C5	C6	N10	-178.2(8)		
C4	C5	C6	Cs11 ²	-69.8(10)		
C4	C5	N7	C8	-1.4(9)		
C4	C5	N7	Cs11	138.5(6)		
C5	C4	N9	C8	0.2(9)		
C5	C4	N9	Cs111	143.2(6)		
C5	C4	N9	Cs12	-138.2(5)		
C5	C6	N10	Cs11 ²	142.2(8)		
C5	N7	C8	N9	1.7(10)		
C5	N7	C8	Cs11	150.2(8)		
C6	N1	C2	N3	-0.9(14)		
C6	C5	N7	C8	-179.8(9)		
C6	C5	N7	Cs11	-39.9(13)		
N7	C5	C6	N1	179.8(8)		
N7	C5	C6	N10	0.2(14)		
$^{1}-1/2+X$	1/2+Y.1	$/2-Z; ^{2}1-Z$	XYZ:	$^{3}1/2+X.1/2-YZ$		

۸	В	C	Л	Angle/°
A N7	D C5	C C6	D	108.6(10)
IN/ N7	C°	NO	C_{1}	108.0(10)
IN/ N7		IN9 NO	C4	-1.2(10)
IN /		IN9 NIO	C_{s11}	-101.3(10)
IN /		N9	CS12	103.7(9)
N9	C4	C5	C6	1/9.5(/)
N9	C4	C5	N/	0.8(9)
$Cs11^2$	NI	C2	N3	126.1(8)
$Cs11^2$	N1	C6	C5	-135.4(6)
$Cs11^2$	N1	C6	N10	44.3(8)
$Cs11^1$	N3	C4	C5	-140.9(7)
$Cs11^1$	N3	C4	N9	38.9(8)
$Cs11^1$	N3	C4	Cs12	78.15(14)
$Cs11^1$	C4	C5	C6	-94.8(11)
$Cs11^1$	C4	C5	N7	86.5(10)
Cs111	C4	N9	C8	-143.0(6)
Cs111	C4	N9	Cs12	78.59(15)
Cs11	N7	C8	N9	-148.5(6)
Cs11	C8	N9	C4	-52.3(13)
Cs11	C8	N9	Cs11 ¹	-152.4(6)
Cs11	C8	N9	Cs12	54.5(15)
Cs12 ³	N1	C2	N3	-140.2(8)
Cs12 ³	N1	C6	C5	138.8(6)
Cs12 ³	N1	C6	N10	-41.5(9)
Cs12 ³	N1	C6	Cs11 ²	-85.8(3)
Cs12	N3	C4	C5	141.0(7)
Cs12	N3	C4	N9	-39.3(7)
Cs12	N3	C4	Cs11 ¹	-78.15(14)
Cs12	C4	C5	C6	106.0(9)
Cs12	C4	C5	N7	-72.7(11)
Cs12	C4	N9	C8	138 4(6)
Cs12	C_{4}	N9	$C_{s}11^{1}$	-7859(15)
0512	Uт	117	0311	(0.5)(15)

Table	S14.	Cartesia	an	coordi	inates	of	adenyl	ate a	anion
ъ т	4	0.10			< 0	~ ~			

Ν	-1.222812	-1.444326	-0.006366
Ν	-2.137148	0.686607	0.011026
Ν	-0.021769	1.924784	0.001252
Ν	1.929042	0.495925	0.003409
Ν	1.815938	-1.845551	-0.072478
С	-0.216781	-0.507821	-0.021902
С	-0.780888	0.799597	-0.007686
С	1.174146	-0.610013	-0.019571
С	-2.314872	-0.657248	0.011176
С	1.280915	1.683710	0.007551
Η	-3.312686	-1.085863	0.027254
Η	1.932678	2.556362	0.023050
Η	2.744314	-1.831870	0.326096
Η	1.237815	-2.610053	0.248293

Table S15. Cartesian coordinates of Na-adenylate

Ν	-0.480522	2.023126	0.001407
Ν	1.573933	0.986256	0.003343
Ν	0.794949	-1.313372	0.001223
Ν	-1.595099	-1.523437	0.005173
Ν	-3.048162	0.290927	-0.045475
С	-0.657132	0.658264	-0.005087
С	0.597757	0.033122	-0.001742
С	-1.775914	-0.186939	-0.006269
С	0.846491	2.144474	0.005133
С	-0.347850	-2.002878	0.005696
Η	1.335431	3.110504	0.011054
Η	-0.259248	-3.085701	0.013270
Н	-3.800695	-0.351228	0.141913
Н	-3.197318	1.271910	0.125937
Na	3.020547	-0.733295	-0.003477

Table S16. Cartesian coordinates of K-adenylate

Ν	-1.090084	1.988352	0.000415
Ν	1.082814	1.221486	0.007560
Ν	0.586190	-1.167925	0.004703
Ν	-1.766550	-1.661076	0.006095
Ν	-3.422695	-0.027183	-0.055311
С	-1.089797	0.613470	-0.006379
С	0.237099	0.148545	0.000126
С	-2.101002	-0.356227	-0.009000
С	0.211794	2.274533	0.008022
С	-0.468554	-1.984677	0.009400
Η	0.572854	3.295867	0.015128
Η	-0.252900	-3.050133	0.018813
Η	-4.090130	-0.749321	0.162367
Η	-3.676796	0.927843	0.139564
Κ	3.104316	-0.372300	-0.004900

T 11 017	a	1.	0	a 1	1 .
Toble VII/	('ortocion	agardinatag	ot	C odony	lota
\mathbf{I} and \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}	Calicsian	COOLUMATES	OI.	US-auchy	Idic
1.0010 01/1	0.0010000000000000000000000000000000000	•••••••••	~ -		

Ν	-2.339699	1.945176	-0.001144
Ν	-0.107853	1.361244	0.013684
Ν	-0.414073	-1.066658	0.010718
Ν	-2.724968	-1.741898	0.006662
Ν	-4.502334	-0.237283	-0.067077
С	-2.223042	0.576210	-0.007920
С	-0.859104	0.220771	0.003727
С	-3.156151	-0.467433	-0.012261
С	-1.063625	2.334972	0.011071
С	-1.403102	-1.959969	0.013937
Н	-0.788818	3.383461	0.019531
Н	-1.106054	-3.006332	0.025912
Н	-5.107025	-1.004690	0.178937
Н	-4.819270	0.694046	0.151186
Cs	2.448615	-0.111234	-0.003033

Table S18. Cartesian coordinates of 9H-Guanylate anion

0	-0.174351	2.683351	0.009774
Ν	2.184259	0.684365	0.003171
Ν	-1.556988	0.843732	-0.006934
Ν	-0.718022	-1.428996	-0.008433
Ν	1.715921	-1.506024	0.005506
Ν	-2.991073	-0.970602	-0.075208
С	0.803857	0.502962	-0.005437
С	0.496067	-0.856292	-0.004455
С	-0.301327	1.453115	-0.002593
С	-1.674369	-0.476138	-0.017837
С	2.692454	-0.519278	0.006997
Η	3.746252	-0.763228	0.012425
Η	-3.079251	-1.885226	0.345225
Η	-3.654234	-0.297248	0.281192
Η	1.843271	-2.504646	-0.003799

Table S19. Cartesian coordinates of 1H-Guanylate anion

0	0.112449	2.680607	-0.012598
Ν	-2.259976	0.602844	0.021599
Ν	1.423546	0.808902	-0.003302
Ν	0.709409	-1.438399	0.001386
Ν	-1.712395	-1.640577	-0.011824
Ν	3.002476	-0.929718	-0.074006
С	-0.891983	0.466474	0.017148
С	-0.573029	-0.920133	-0.005618
С	0.138128	1.448652	0.003787
С	1.641921	-0.546447	-0.010915
С	-2.669306	-0.669622	0.003359
Η	2.199588	1.439842	-0.144330
Η	-3.724071	-0.926378	0.002393
Н	3.049326	-1.939231	-0.006243
Н	3.559756	-0.513997	0.665432

Table	S20.	Cartes	ian c	coordi	nates	of Na-	guanyl	ate
~	0.00	0010			-			

	-		6
0	-0.839810	-2.170535	-0.005273
Ν	-1.836094	0.721990	0.018293
Ν	1.265487	-1.231179	-0.004140
Ν	1.729413	1.095009	0.007171
Ν	-0.308121	2.439992	-0.010382
Ν	3.473125	-0.457077	-0.076604
С	-0.553014	0.207311	0.018209
С	0.370188	1.272296	-0.001893
С	-0.128289	-1.130800	0.007136
С	2.119649	-0.140508	-0.002836
С	-1.599953	2.047041	0.000905
Η	1.639930	-2.162912	-0.121254
Η	-2.409888	2.765807	-0.003672
Н	4.040672	0.374954	0.012938
Н	3.786398	-1.191080	0.545573
Na	-2.896072	-1.266881	-0.005536

Table S21. Cartesian coordinates of K-guanylate

0	-0.885757	-1.911647	0.004847
Ν	-1.336140	1.146533	0.026307
Ν	1.344811	-1.364983	-0.000925
Ν	2.238892	0.826956	0.002367
Ν	0.501310	2.532477	-0.012401
Ν	3.660140	-1.026764	-0.083109
С	-0.179756	0.387672	0.023387
С	0.935839	1.255198	-0.002791
С	-0.011122	-1.009278	0.013940
С	2.389356	-0.458930	-0.005772
С	-0.842669	2.397380	0.004484
Η	1.534504	-2.350899	-0.118228
Η	-1.495363	3.262235	0.000972
Η	4.371925	-0.313419	0.001548
Η	3.830744	-1.795734	0.552546
Κ	-3.145723	-0.723199	-0.010567

Table S22. Cartesian coordinates of Cs-guanylate

0	-0.078920	-1.691461	0.010083
Ν	-0.107826	1.420348	0.028995
Ν	2.198877	-1.445330	0.000139
Ν	3.388872	0.597338	-0.000543
Ν	1.911805	2.527775	-0.012738
Ν	4.539443	-1.437649	-0.086391
С	0.925164	0.501925	0.023771
С	2.155919	1.201873	-0.003881
С	0.898856	-0.908650	0.016372
С	3.358393	-0.695889	-0.008112
С	0.561031	2.584709	0.006757
Η	2.248523	-2.447851	-0.117575
Η	0.039928	3.535383	0.004767
Η	5.341276	-0.826074	-0.007726
Η	4.603910	-2.209490	0.565776
Cs	-2.591212	-0.222936	-0.004392