Supporting Information

Positional isomers of (E)-2-(anthracen-9-ylmethylene)-N-(aryl)hydrazinecarbothioamide, zinc complexes and polymorphic solvates

Contents

General

Spectroscopic details of the Ligands and complexes

Figure S1	¹ HNMR (DMSO-d ₆ , 600 MHz) spectra of the 3-OCH ₃ HATU·DMF
Figure S2	¹³ CNMR (125 MHz, DMSO-d ₆) spectra of the 3-OCH ₃ HATU·DMF
Figure S3	FT-IR spectrum (neat) of the 3OCH ₃ HATU·DMF
Figure S4	¹ HNMR (DMSO-d _{6/} acetone-d ₆ , 600 MHz) spectra of the 4-OCH ₃ HATU
Figure S5	¹³ CNMR (125 MHz, DMSO-d _{6/} acetone-d ₆) spectra of the 4-OCH ₃ HATU
Figure S6	FT-IR spectrum (neat) of the 4-OCH ₃ HATU
Figure S7	Powder X-ray diffraction patterns of the 4-OCH ₃ HATU
Figure S8	¹ H-NMR (DMSO-d ₆ , 600 MHz) spectra of the 23-ClHATU
Figure S9	¹³ CNMR (125 MHz, DMSO-d ₆) spectra of the 23-ClHATU
Figure S10	FT-IR spectrum (neat) of the 23-ClHATU
Figure S11	Powder X-ray diffraction patterns of the 23-ClHATU
Figure S12	¹ HNMR (DMSO-d ₆ , 600 MHz) spectra of the 34-ClHATU
Figure S13	¹³ CNMR (125 MHz, DMSO-d ₆) spectra of the 34-ClHATU
Figure S14	FT-IR spectrum (neat) of the 34-ClHATU
Figure S15	Powder X-ray diffraction patterns of the 34-ClHATU
Figure S16	¹ H-NMR (DMSO-d ₆ / acetone-d ₆ , 600 MHz) spectra of the [Zn{3- OCH ₂ ATU} $_{2}$ ·DMF]
Figure S17	¹³ CNMR (125 MHz, DMSO-d ₆) spectra of the $[Zn{3-OCH_3ATU}]_2$ ·DMF]
Figure S18	FT-IR spectrum (neat) of the $[Zn{3-OCH_3ATU}]_2$ ·DMF]
Figure S19	¹ HNMR (DMSO-d ₆ , 600 MHz) spectra of the [Zn{4-OCH ₃ ATU)} ₂ ·3DMF]
Figure S20	¹³ CNMR (125 MHz, DMSO- $d_{6/}$ acetone- d_{6}) spectra of the [Zn{4-OCH ₃ ATU)} ₂ ·3DMF]
Figure S21	FT-IR spectrum (neat) of the $[Zn{4-OCH_3ATU}]_2 \cdot 3DMF]$
Figure S22	¹ HNMR (DMSO-d ₆ acetone-d ₆ , 600 MHz) spectra of the [Zn{23- ClATU)} ₂ ·CHCl ₃]-1
Figure S23	¹³ CNMR (125 MHz, DMSO-d ₆ /acetone-d ₆) spectra of the [Zn{23- ClATU)} ₂ ·CHCl ₃]-1
Figure S24	¹ HNMR (CDCl ₃ , 600 MHz) spectra of the $[Zn{23-ClATU}]_2$ ·CHCl ₃]-2

Figure S25	¹³ CNMR (125 MHz, CDCl ₃) spectra of the $[Zn{23-ClATU}]_2 \cdot CHCl_3]$ -2
Figure S26	FT-IR spectrum (neat) of the $[Zn{23-ClATU}]_2$ ·CHCl ₃]-2
Figure S27	¹ H-NMR (DMSO-d ₆ , 600 MHz) spectra of the [Zn{34-ClATU)} ₂ ·CHCl ₃]
Figure S28	¹³ CNMR (125 MHz, DMSO-d ₆) spectra of the [Zn{34-ClATU)} ₂ ·CHCl ₃]
Figure S29	FT-IR spectrum (neat) of the [Zn{34-ClATU)} ₂ ·CHCl ₃]
Figure S30	Powder X-ray diffraction patterns of the (a) $[Zn{4-OCH_3ATU}_2\cdot 3DMF]$, (b) $[Zn{23-ClATU}_2\cdot CHCl_3]-2$, (c) $[Zn{34-ClATU}_2\cdot CHCl_3]$
Figure S31	Finger-print plots of Hirshfeld surfaces with different contacts in $[Zn{23-ClATU}]_2$ ·CHCl ₃]-1
Figure S32	Finger-print plots of Hirshfeld surfaces with different contacts in $[Zn{23-ClATU}]_2$ ·CHCl ₃]-2
Figure S33	(a) Hirshfeld surface of $[Zn{34-ClATU}]_2 \cdot CHCl_3]$, (b) Finger-print plots of different contacts $[Zn{34-ClATU}]_2 \cdot CHCl_3]$
Figure S34	(a) Hirshfeld surface of $[Zn{3-OCH_3ATU}]_2 \cdot DMF]$, (b) Finger-print plots of different contacts $[Zn{3-OCH_3ATU}]_2 \cdot DMF]$
Figure S35	(a) Hirshfeld surface of $[Zn \{4-OCH_3ATU\}_2 \cdot 3DMF]$, (b) Finger-print plots of different contacts $[Zn \{4-OCH_3ATU\}_2 \cdot 3DMF]$
Table S1	The crystal and refinement parameters of the ligands and the zinc complexes
Table S2	Hydrogen bond parameters of ligands and complexes
Table S3	The percentge contacts of different atoms within a radius of 3.8 Å from Finger-print plots of the complexes
Table S4	Hershfeld surfaces, Finger-print plots and percentage contacts in the ligands
Table S5	The theoretical energy of the positional isomeric molecules and complexes calculated by DFT using B3LYP level with basis set LANL2DZ, singlet state without solvation

General:

A PerkinElmer Spectrum Two FT-IR spectrometer was used to record IR spectra (4000-400 cm⁻¹) by ATR method. Powder X-ray diffraction patterns were recorded by using a Rigaku X-ray diffractometer (the source was with copper K α , $\lambda = 1.54$ Å with 9 kW power). A Bruker Ascend-600 MHz NMR spectrometer was used for NMR spectra. Thermogravimetry and differential scanning calorimetry were recorded by using a thermal analyser (STA449 F3 Jupitor) under nitrogen with a heating rate of 10 °C min⁻¹.

Crystallographic Study: Single-crystal X-ray diffraction data were collected at 296 K with MoK α radiation ($\lambda = 0.71073$ Å) by a Bruker Nonius SMART APEX CCD diffractometer equipped with a graphite monochromator and an Apex CCD camera. Data reductions and cell refinement for Bruker Nonius SMART APEX CCD diffractometer were performed using SAINT and XPREP software. Structures were solved by direct methods and were refined by full-matrix least-squares on F² using SHELXL-2014 software. All non-hydrogen atoms were refined in anisotropic approximation against F² of all reflections. Hydrogen atoms were placed at their geometric positions by riding and refined in the isotropic approximation

Spectroscopic details of the ligands and complexes:

3-OCH₃HATU·DMF: Yield = 79 %. IR (Neat, cm⁻¹): 3284 (w), 2928 (w), 1627 (s), 1603 (s), 1538 (s), 1494 (s), 1414 (m), 1396 (s), 1300 (m), 1268 (m), 1232 (s), 1173 (s), 1156 (s), 1072 (s), 1038 (m), 1017 (m), 981 (m), 955 (s), 898 (s), 843 (s), 825 (s). ¹HNMR (600 MHz, DMSO-d₆, ppm): 12.08 {s, N-H (1)}, 9.96 {s, N-H (2)}, 9.41 (s, 1H), 8.73 (s, 1H), 8.58 (d, J = 9 Hz, 2H), 8.16 (d, J = 8.4 Hz, 2H), 7.66 (t, J = 9 Hz, 2H), 7.59 (t, J = 7.2 Hz, 2H), 7.35 (s, 1H), 7.26-7.2 (m, 2H), 6.75 (d, J = 8.4 Hz, 1H), 3.1 (s, 3H), 2.93 (s, 3H), 2.78 (s, 3H), 1.95 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆): 175.71, 169.60, 159.02, 142.55, 140.14, 130.89, 129.71, 129.53, 128.98, 128.81, 127.34, 125.65, 125.13, 124.83, 117.06, 110.58, 110.55, 55.12, 37.45, 34.50, 21.43.

4-OCH₃HATU: Yield = 86 %. IR (Neat, cm⁻¹): 3333 (m), 3138 (m), 2985 (w), 1740 (m), 1538 (s), 1512 (s), 1416 (m), 1353 (s), 1298 (s), 1271 (s), 1271 (s), 1240 (s), 1215 (s),1172 (m), 1060 (s), 1030 (s), 949 (s), 893 (s), 838 (s), 807 (s). ¹HNMR (600 MHz, DMSO-d₆, ppm): 11.98 {s, N-H (1)}, 9.90 {s, N-H (2)}, 9.39 (s, 1H), 8.73 (s, 1H), 8.59 (d, J = 9 Hz, 2H), 8.16 (d, J = 8.4 Hz, 2H), 7.65 (t, J = 9 Hz, 2H), 7.59 (t, J = 7.8 Hz, 2H), 7.44 (d, J = 9 Hz, 2H), 6.91 (d, J = 9 Hz, 2H), 3.75 (s, 3H). ¹³C NMR (125 MHz, DMSO-d₆): 176.36, 156.86, 142.33, 134.61, 131.96, 130.90, 129.70, 129.44, 128.96, 127.32, 127.09, 126.80, 125.65, 125.24, 124.90, 113.28, 55.25.

23-CIHATU: Yield = 83 %. IR (Neat, cm⁻¹): 3305 (m), 3140 (m), 2984 (w), 1548 (s), 1505 (s), 1454 (s), 1413 (s), 1395 (s), 1331 (s), 1297 (s), 1238 (s), 1179 (s), 1159 (m), 1072 (s), 1046 (s), 1017 (s), 961 (m), 943 (s), 920 (m), 882 (s), 838 (s), 804 (s). ¹HNMR (600 MHz, DMSO-d₆, ppm): 12.32 {s, N-H (1)}, 10.09 {s, N-H (2)}, 9.46 (s, 1H), 8.76 (s, 1H), 8.65 (d, J = 9.6 Hz, 2H), 8.17 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 9.6 Hz, 1H), 7.66 (t, J = 7.8 Hz, 2H), 7.6 (t, J = 7.8 Hz, 2H), 7.55 (d, J = 7.8 Hz, 1H), 7.41 (t, J = 8.4 Hz, 1H). ¹³C NMR (125 MHz, DMSO-d₆): 176.19, 143.17, 138.33, 131.54, 130.91, 129.94, 129.75, 129.06, 128.18, 127.80, 127.57, 127.57, 127.48, 125.70, 124.79, 124.63.

34-CIHATU: Yield = 92 %. IR (Neat, cm⁻¹): 3315 (m), 3188 (w), 1620 (m), 1592 (s), 1577 (m), 1535 (s), 1506 (m), 1474 (s), 1422 (s), 1382 (s), 1358 (s), 1252 (s), 1189 (s), 1134 (s), 1077 (s), 1021 (s), 960 (m), 941 (m), 889 (s), 842 (s), 809 (s). ¹HNMR (600 MHz, DMSO-d₆, ppm): 12.22 {s, N-H (1)}, 10.21 {s, N-H (2)}, 9.41 (s, 1H), 8.74 (s, 1H), 8.56 (d, J = 9 Hz, 2H), 8.16 (d, J = 7.8 Hz, 2H), 8.0 (s, 1H), 7.66-7.64 (m, 3H), 7.6-7.58 (m, ¹³C NMR (125 MHz, DMSO-d₆): 175.96, 143.29, 139.30, 130.84, 130.05, 129.73, 129.71, 129.57, 128.93, 127.34, 126.87, 126.59, 125.64, 125.39, 125.06, 124.84.

 $[Zn{3-OCH_3ATU}_2 DMF]$: Yield = 66 % (based on Zn). IR (Neat, cm⁻¹): 3265 (w), 2927 (w), 1655 (s), 1604 (s), 1546 (s), 1476 (s), 1444 (s), 1405 (s), 1359 (s), 1330 (s), 1307 (m), 1224 (s), 1187 (m), 1170 (s), 1156 (s), 1090 (s), 1072 (s), 1041 (s), 957 (m), 940 (s), 892 (s), 852 (s), 843 (s). ¹HNMR (600 MHz, DMSO-d₆, ppm): 9.26 {s, N-H (2), 2H}, 8.74 (s, 2H), 8.64 (s, 2H), 8.20 (d, J = 10.2 Hz, 4H), 7.95 (d, J = 10.2 Hz, 4H), 7.95 (s, 2H), 7.60-7.56 (m, 8H), 6.71 (s, 2H), 6.43 (d, J = 6 Hz, 2H), 6.33 (t, J = 8.4 Hz, 2H), 6.11 (d, J = 8.4 Hz, 2H), 2.95 (s, 6H), 2.88 (s, 6H), 2.73 (s, 6H). ¹³CNMR (125 MHz, DMSO-d₆): 171.31, 162.37, 158.80, 148.88, 141.63, 130.86, 129.47, 128.85, 128.13, 127.98, 127.85, 126.55, 125.65, 125.44, 112.08, 107.07, 104.58, 54.10, 35.82, 30.81.

 $[Zn{4-OCH₃ATU}]_{2}\cdot 3DMF]: Yield = 69 \% (based on Zn). IR (Neat, cm⁻¹): 3254 (w), 2925 (w), 1740 (m), 1660 (s), 1506 (s), 1471 (s), 1405 (s), 1384 (m), 1298 (s), 1232 (s), 1175 (s), 1080 (s), 1030 (s), 939 (m), 891 (s), 827 (s). ¹HNMR (600 MHz, DMSO-d₆, ppm): 9.21 {s, N-H (2), 2H}, 8.76 (s, 2H), 8.66 (s, 2H), 8.22 (d, J = 9 Hz, 4H), 7.97 (d, J = 6 Hz, 4H), 7.95 (s, 3H), 7.59 (t, J = 4.8 Hz, 8H), 6.75 (d, J = 9 Hz, 4H), 6.03 (d, J = 9 Hz, 4H), 3.5 (s, 6H), 2.87 (s, 9H), 2.72 (s, 9H). ¹³C NMR (125 MHz, DMSO-d₆): 176.52, 162.38, 153.46, 147.77, 133.93, 130.82, 129.64, 128.83, 128.04, 127.87, 126.48, 125.66, 120.94, 112.47, 54.86, 35.84, 30.82. [Zn{23-ClATU}]_2·CHCl_3]-2: Yield = 61 % (based on Zn). IR (Neat, cm⁻¹): 3403 (m), 3050 (w), 1583 (s), 1521 (s), 1477 (s), 1450 (s), 1395 (s), 1357 (s), 1305 (s), 1205 (s), 1181 (s), 1079 (s), 1049 (s), 1016 (m), 941 (s), 889 (s), 835 (s), 825 (s). ¹HNMR (600 MHz, DMSO-d₆, ppm): 8.78 {s, N-H (2), 2H}, 8.73 (s, 2H), 8.32 (s, 2H), 8.21 (s, 2H), 8.19 (d, 4H), 7.9 (d, J = 8.4 Hz, 4H), 7.58-7.63 (m, 8H), 6.93 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 8.4 Hz, 2H), 6.07 (t, J = 8.4 Hz, 2H). ¹³C NMR (125 MHz, DMSO-d₆): 171.75, 150.65, 137.60, 130.95, 130.66, 128.97, 128.83, 128.12, 127.95, 126.63, 126.19, 125.66, 125.47, 123.87, 123.08, 120.03, 79.20.$

 $[Zn{34-ClATU}]_2 \cdot CHCl_3]$: Yield = 59 % (based on Zn). IR (Neat, cm⁻¹): 3320 (m), 1580 (s), 1530 (s), 1469 (s), 1384 (s), 1364 (s), 1302 (s), 1240 (s), 1191 (s), 1158 (s), 1134 (s), 1073 (s), 1046 (s), 1026 (s), 940 (s), 919 (s), 880 (s), 836 (s), 820 (s), 803 (s). ¹HNMR (600 MHz, DMSO-

d₆, ppm): 9.63 {s, N-H (2), 2H}, 8.79 (s, 2H), 8.73 (s, 2H), 8.32 (s, 2H), 8.23 (d, J = 9.6 Hz, 4H), 7.91 (d, J = 9.6 Hz, 4H), 7.60-7.58 (m, 8H), 7.24 (s, 2H), 6.84 (d, J = 9 Hz, 2H), 6.72 (d, J= 8.4 Hz, 2H). ¹³C NMR (125 MHz, DMSO-d₆): 171.18, 150.39, 140.36, 130.91, 130.10, 129.07, 128.98, 128.43, 127.71, 126.68, 125.65, 125.22, 122.05, 120.39, 119.05, 79.20.

Figure S1: ¹HNMR (DMSO-d₆, 600 MHz) spectra of the 3-OCH₃HATU·DMF

Figure S2: ¹³CNMR (125 MHz, DMSO-d₆) spectra of the 3-OCH₃HATU·DMF

Figure S3: FT-IR spectrum (neat) of the 3-OCH₃HATU·DMF

Figure S4: ¹HNMR (DMSO-d_{6/} acetone-d₆, 600 MHz) spectra of the 4-OCH₃HATU

Figure S5: ¹³CNMR (125 MHz, DMSO-d_{6/} acetone-d₆) spectra of the 4-OCH₃HATU

Figure S6: FT-IR spectrum (neat) of the 4-OCH₃HATU

Figure S7: Powder X-ray diffraction patterns of the 4-OCH₃HATU

Figure S8: ¹H-NMR (DMSO-d₆, 600 MHz) spectra of the 23-ClHATU

Figure S9: ¹³CNMR (125 MHz, DMSO-d₆) spectra of the 23-ClHATU

Figure S10: FT-IR spectrum (neat) of the 23-ClHATU

Figure S11: Powder X-ray diffraction patterns of the 23-ClHATU

Figure S12: ¹HNMR (DMSO-d₆, 600 MHz) spectra of the 34-ClHATU

Figure S13: ¹³CNMR (125 MHz, DMSO-d₆) spectra of the 34-ClHATU

Figure S14: FT-IR spectrum (neat) of the 34-ClHATU

Figure S15: Powder X-ray diffraction patterns of the 34-ClHATU

Figure S16: ¹HNMR (DMSO-d₆/ acetone-d₆, 600 MHz) spectra of the [Zn{3-OCH₃ATU)}₂·DMF]

Figure S17: ¹³CNMR (125 MHz, DMSO-d₆) spectra of the [Zn{3-OCH₃ATU}}₂·DMF]

Figure S18: FT-IR spectrum (neat) of the [Zn{3-OCH₃ATU}}₂·DMF]

Figure S20: ¹³CNMR (125 MHz, DMSO- $d_{6/}$ acetone- d_{6}) spectra of the [Zn{4-OCH₃ATU)}₂·3DMF]

Figure S21: FT-IR spectrum (neat) of the [Zn{4-OCH₃ATU)}₂·3DMF]

Figure S22: ¹HNMR (DMSO-d₆ acetone-d₆, 600 MHz) spectra of the [Zn{23-ClATU)}₂·CHCl₃]-1

Figure S23: ¹³CNMR (125 MHz, DMSO-d₆ /acetone-d₆) spectra of the [Zn{23-ClATU)}₂·CHCl₃]-1

Figure S24: ¹HNMR (CDCl₃, 600 MHz) spectra of the [Zn{23-ClATU)}₂·CHCl₃]-2

Figure S25: ¹³CNMR (125 MHz, CDCl₃) spectra of the [Zn{23-ClATU)}₂·CHCl₃]-2

Figure S27: ¹HNMR (DMSO-d₆, 600 MHz) spectra of the [Zn{34-ClATU)}₂·CHCl₃]

Figure S28: ¹³CNMR (125 MHz, DMSO-d₆) spectra of the [Zn{34-ClATU)}₂·CHCl₃]

Figure S29: FT-IR spectrum (neat) of the [Zn{34-ClATU)}₂·CHCl₃]

Figure S30: Powder X-ray diffraction patterns of the (a) $[Zn{4-OCH_3ATU}_2 \cdot 3DMF]$, (b) $[Zn{23-ClATU}_2 \cdot CHCl_3]-2$, (c) $[Zn{34-ClATU}_2 \cdot CHCl_3]$

Parameter	3-OCH ₃ HATU ·DMF	$[Zn{3-OCH_3ATU}]_2$ ·DMF]	4-OCH ₃ HATU	[Zn{4-OCH ₃ ATU)} ₂ · 3DMF]	34-CIHATU
Formula	C ₂₇ H ₂₈ N ₄ SO ₂	C ₅₂ H ₅₀ N ₈ O ₄ S ₂ Zn	C ₂₃ H ₁₉ N ₃ OS	C55H57N9O5S2Zn	C ₂₂ H ₁₅ N ₃ Cl ₂ S
Mol. wt.	472.59	980.49	385.47	1053.58	424.35
Space group	$P 2_1/n$	<i>C2/</i> c	Pbca	<i>P</i> 1	$P 2_1 2_1 2_1$
a(Å)	15.043(3)	31.105(3)	8.1754(6)	8.740(3)	4.4462(3)
b(Å)	7.2223(13)	9.3163(10)	19.3485(14)	16.268(6)	18.6620(14)
c (Å)	23.229(4)	19.108(2)	23.8411(18)	18.987(7)	22.7605(17)
α (°)	90	90	90	83.243(12)	90
β (°)	100.863(5)	118.737(3)	90	85.719(13)	90
γ (°)	90	90	90	85.156(13)	90
V (Å ³)	2478.5(8)	4855.3(9)	3771.2(5)	2665.6(17)	1888.6(2)
Density, g cm ⁻³	1.267	1.341	1.358	1.313	1.492
Abs. coeff., mm ⁻¹	0.162	0.646	0.191	0.595	0.468
F(000)	1000	2048	1616	1104	874.07
Total no. of reflections	4391	4283	3327	9400	3348
Reflections, $I > 2\sigma(I)$	2478	3260	2428	7027	2210
Max. θ/°	25.048	25.047	25.038	25.050	25.040
Ranges (h, k, l)	$-17 \le h \le 17$	$-36 \le h \le 36$	$-9 \le h \le 9$	$-10 \le h \le 10$	$-5 \le h \le 5$
	$-8 \le k \le 8$	$-11 \le k \le 11$	$-23 \le k \le 23$	$-19 \le k \le 19$	$-21 \le k \le 22$
	$-27 \le 1 \le 27$	$-22 \le l \le 22$	$-28 \le 1 \le 28$	$-22 \le 1 \le 22$	$-26 \le 1 \le 27$
Complete to 2θ (%)	99.9	99.7	99.9	99.5	99.9
Data/restraints/paramete	4391/0/311	4283/0/306	3327/0/254	9400/5/657	3348/0/253
rs					
GooF (F ²)	1.024	1.188	1.036	1.014	1.176
R indices $[I > 2\sigma(I)]$	0.0658	0.0473	0.0425	0.0625	0.0642
$wR_2 [I > 2\sigma(I)]$	0.1601	0.1203	0.0998	0.1655	0.1084
R indices (all data)	0.1260	0.0756	0.0656	0.0839	0.1264
wR ₂ (all data)	0.1944	0.1543	0.1105	0.1787	0.1401
CCDC No.	2346243	2346245	2346246	2346247	2346253

Table S1:	The crystal	and refinement	parameters	of the l	igands and	l the zinc	complexes

Parameter	23-CIHATU	[Zn{23-	[Zn{23-	[Zn{34-
		ClATU) ₂ ·CHCl ₃]-1	ClATU) ₂ ·CHCl ₃]-2	ClATU)}2·CHCl3]
Formula	$C_{22}H_{15}N_3Cl_2S$	C46H30N6Cl10S2Zn	C46H30N6Cl10S2Zn	C46H30N6S2Cl10Zn
Mol. wt.	424.33	1150.75	1150.75	1150.75
Space group	$P 2_1/n$	P 1	P ccn	<i>C2/</i> c
a(Å)	3.968(2)	9.909(5)	25.202(2)	24.961(6)
b(Å)	19.460(11)	15.867(9)	9.4183(9)	17.276(4)
c (Å)	25.084(13)	18.059(10)	20.248(2)	14.020(3)
α (°)	90	105.037(19)	90	90
β (°)	91.79(2)	97.95(2)	90	122.367(7)
γ (°)	90	103.998(19)	90	90
V (Å ³)	1936.2(19)	2599(3)	4806.2(8)	5106(2)
Density, g cm ⁻³	1.456	1.501	1.590	1.497
Abs. coeff., mm ⁻¹	0.456	1.137	1.196	1.126
F(000)	872	1183	2320	2320
Total no. of reflections	3411	8862	4244	4481
Reflections, $I > 2\sigma(I)$	1805	5580	3771	3545
Max. θ/°	24.99	24.79	25.04	25.03
Ranges (h, k, l)	$-4 \le h \le 4$	$-11 \le h \le 11$	$-29 \le h \le 29$	$-29 \le h \le 29$
	$-18 \le k \le 23$	$-18 \le k \le 18$	$-11 \le k \le 11$	$-20 \le k \le 17$
	$-29 \le 1 \le 23$	$-21 \le 1 \le 21$	$-24 \le l \le 24$	$-15 \le 1 \le 16$
Complete to 2θ (%)	99.9	98.9	99.8	99.6
Data/restraints/parameters	3411/0/253	8862/0/550	4244/0/294	4481/0/294
GooF (F ²)	1.046	1.069	1.042	1.075
R indices $[I > 2\sigma(I)]$	0.0778	0.0734	0.0677	0.0773
$wR_2 [I > 2\sigma(I)]$	0.1701	0.2175	0.1734	0.2210
R indices (all data)	0.1621	0.1161	0.0755	0.0907
wR ₂ (all data)	0.2131	0.2425	0.1827	0.2322
CCDC No.	2346248	2387524	2346250	2346254

Table S2: Hydrogen bond parameters of ligands and complexes					
Compounds	D-H…A (Symmetry)	d _{D-H} (Å)	$d_{H \cdots A}(A)$	$d_{D \cdots A}(A)$	∠D-H…A (o)
	N(2) - H(2) - O(2) [1-x, 1-y, -z]	0.86	2.02	2.829(4)	157
3-OCH ₃ HATU·DMF	C(7) -H(7) \cdots S(1) [1/2+x, 1/2-y, 1/2+z]	0.93	2.75	3.654(4)	163
	C(15) - H(15) - O(2) [1-x, 1-y, -z]	0.93	2.41	3.175(7)	139
	N(2) -H(2) ···S(1)) [-x, -y, -z]	0.86	2.62	3.4455(18)	162
4-OCH ₃ HATU	N(2) - H(2) - O(1) [x, y, z]	0.93	2.35	2.973(7)	124
23-CIHATU	N(2) -H(2)S(1) [2-x, 1-y, 1-z]	0.86	2.66	3.471(5)	157(4)
34-CIHATU	N(2) -H(2)S(1) [-1/2+x, 1/2-y, 1-z]	0.86	2.73	3.5025(3)	149
	N(3) - H(3) O(2) [x, y, z]	0.86	2.14	2.972(5)	163
[Zn{3-OCH ₃ ATU)} ₂ ·	C(4) -H(4)O(1) [1/2-x, 5/2-y, 1-z]	0.93	2.56	3.259(8)	132
DMF]	C(22) -H(22)O(2) [x, y, z]	0.93	2.48	3.277(5)	144
	N(3) -H(3)O(4) [-1+x, y, z]	0.86	2.01	2.844(10)	163
$[Zn{4-OCH_3ATU}]_2$	N(6) -H(6)O(3) [-x, 1-y, 1-z]	0.86	2.06	2.918(5)	173
3DMF]	C(45) -H(45)O(3) [-x, 1-y, 1-z]	0.93	2.59	3.373(7)	142
	C(49) -H(49A)S(2) [-x, 1-y, 1-z]	0.93	2.81	3.536(5)	135

Figure S31: Finger-print plots of Hirshfeld surfaces with different contacts in $[Zn{23-CIATU}]_2 \cdot CHCl_3]$ -1

Figure S32: Finger-print plots of Hirshfeld surfaces with different contacts in $[Zn{23-ClATU}]_2$ ·CHCl₃]-2

Figure S33: (a) Hirshfeld surface of $[Zn{34-ClATU}]_2$ ·CHCl₃], (b) Finger-print plots of different contacts $[Zn{34-ClATU}]_2$ ·CHCl₃]

Figure S34: (a) Hirshfeld surface of $[Zn{3-OCH_3ATU}]_2 \cdot DMF]$, (b) Finger-print plots of different contacts $[Zn{3-OCH_3ATU}]_2 \cdot DMF]$

(a)

(b)

Figure S35: (a) Hirshfeld surface of $[Zn \{4-OCH_3ATU\}_2 \cdot 3DMF]$, (b) Finger-print plots of different contacts $[Zn \{4-OCH_3ATU\}_2 \cdot 3DMF]$

Table S3 : The percentge contacts of different atoms within a radius of 3.8 Å from Fingerprint plots of the complexes

Close Contacts (%) including reciprocal	[Zn{23- ClATU)} ₂ ·CHCl ₃]- 1	[Zn{23-ClATU)}2.CHCl3]-2	[Zn{34-ClATU)}2·CHCl ₃]	$\begin{tabular}{l} $[Zn{3-$ OCH_3ATU}]_2$ DMF] \end{tabular}$	$[Zn{4-OCH_3ATU)}_2 \cdot 3DMF]$
H-C	18.9 %	13.5%	18.2 %	24.6 %	26.1 %
H-Cl	26.7 %	32.8 %	34.6 %		
H-H	28.6 %	21.3 %	20.4 %	47.7 %	49.3 %
H-N	1.0 %	2.2 %	1.4 %	4.5 %	4.3 %
H-S	7.2 %	8.9 %	6.8 %	8.0 %	7.1 %
C-Cl	3.5 %	7.0 %	8.5 %	-	-
Cl-Cl	4.6 %	2.8 %	1.5 %	-	-
H-O	-	-	-	6.4 %	8.2 %

Table S4: Hershfeld surfaces, Finger-print plots and percentage contacts in the ligands

Hirshfeld surface	Finger-print plot	% of contacts
	d_e	C•••H 8.6 % [@]
	2.4	CC 14.0 %
	2.0	CS 0.3 %
	1.6	CN 0.3 %
	1.2	CCl 1.3 5 %
	(A) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8	НН 33.5 %
23-CIHATU		ClCl 1.0 %
		(without
		reciprocal)
	2.8 de	C•••H 9.8 %
	24	C•••C 10.5 %
	2.0	CS 0.0 %
	1.6	CO 0.3 %
2 th	1.2	CCl 2.3 %
	(A) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8	CN 1.7 %
34-CIHATU		HH 29.5 %

Table S5: The theoretical energy of the positional isomeric molecules and complexes calculated by DFT using B3LYP level with basis set LANL2DZ, singlet state without solvation

Energy of different po	ositional isomers and	Difference
compounds	Kcal/mol (within	
		bracket are in Hartee)
وند برگرد. برگره به دفت به دو و دود. و و دور		0.15 kcal/mol
3-OCH ₃ HATU	4-OCH ₃ HATU	
-1136.834746	-1136.834990	(0.000244)
مرغور موجود برد معروف موجود معروف موجود	مرکن مرگزی بردون رود مارمون موجو ردون	27.42 kcal/mol
23-CIHATU	34-CIHATU	
-1051.062921	-1051.106619	(0.043698)
		7.89 kcal/mol
$Zn{3-OCH_3ATU}_2$	$Zn{4-OCH_3ATU}_2$	
-2338.206190	-2338.193609	(0.012581)

