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Synthesis of ligand N, N'-(thiobis(4,1-phenylene)) diisonicotinamide (L4-py).S1 The ligand L4-py has been 

synthesized using isonicotinic acid (0.227 g, 0.92 mmol) and 4,4’-thiodianiline (0.100 g, 0.46 mmol) which 

were dissolved in pyridine (3 mL) and heated at 90 °C for 40 min (Scheme S1). After heating the solution 

triphenylphosphite (TPP) (0.241 mL, 0.92 mmol) was added drop wise and the reaction was stirred for 8 h. 

The progress of the reaction was monitored by thin-layer chromatography (TLC). After completion of the 

reaction, ice-cold water was added to it and an off-white solid precipitated out filtered off and was washed 

with cold water several times followed by diethyl ether. The precipitates were dried at 60 °C for 12 h in an 

oven. Yield (0.180 g, 91 %; based on 4,4’-thiodianiline). FT-IR spectrum (selected peaks; ν cm-1): 3288 (N-

H), 1647, 1590 (C=Oamide). 1H NMR (500 MHz, DMSO-d6); δppm 7.35-7.37 (d, 4H, J = 8.7 Hz, Ha), 7.85-7.86 (d, 

4H, J = 6.0 Hz, Hb), 7.80-7.81 (d, 4H, J = 8.7 Hz, Hc), 8.78-8.80 (d, 4H, J = 5.9 Hz, Hd), 10.60 (s, 2H, He). 13C 

NMR (126 MHz, DMSO-d6) δppm 163.96, 150.17, 141.64, 137.93, 131.26, 129.88, 121.45, 121.24. 

 

 

 

Scheme S1.  Synthesis of ligand N, N'-(thiobis(4,1-phenylene)) diisonicotinamide (L4-py). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1. 1H NMR spectrum of ligand L4-py in DMSO-d6. *Represents the residual water peak is at 3.33 ppm. 
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Fig. S2. 13C NMR spectrum of ligand L4-py in DMSO-d6. *Represents the solvent residual peak. 
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Fig. S3. FT-IR spectrum of ligand L4-py. 

 

                                                          Fig. S4. FT-IR spectrum of Cd-MOF. 
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Fig. S5. UV-Visible spectra of ligand L4-py, co-ligand H2nipa and Cd-MOF in DMSO. 
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                                                     Fig. S6. CHNS data of Cd-MOF. 
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Fig. S7. H-bonding interactions involving N–H---N and N–H---O of amide functionalities of L4-Py. 

 

 

 

 

Fig. S8. PXRD pattern for Cd-MOF bulk sample (red trace) and the one simulated from the single crystal 

structure analysis (black trace). 
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Fig. S9. TGA plot for Cd-MOF. 

 

 

                                    

 

 

 

 

 

 

 

 

 

 

 

Fig. S10. DSC plot for Cd-MOF. 
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Fig. S11. Emission spectra of (a) L4-py and (b) co-ligand H2nipa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     

 

 

Fig. S12. Emission spectra Cd-MOF. 

 



S12 
 

 

 

 

 

Fig. S13. (a) Emission Profile of Cd-MOF in different solvents. (b) Emission Profile of Cd-MOF in 

H2O and dry MeOH, wherein the highest emission intensity observed. 

 

 

 

 

Fig. S14. PXRD pattern of Cd-MOF and the samples recovered after soaking in H2O and MeOH for 

24 h. 
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Fig. S15. TGA plot of Cd-MOF and the samples recovered after soaking in MeOH and H2O for 24 h. 

 

 

 

Fig. S16. FT-IR spectrum of Cd-MOF and the samples recovered after soaking in H2O at different 

pH for 24 h. 
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Fig. S17. PXRD patterns of Cd-MOF and the samples recovered after soaking in H2O at different pH 

for 24 h. 

 

 

 

Fig. S18. FT-IR spectrum of Cd-MOF and the samples recovered after soaking in H2O at different 

temperature for 24 h. 
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Fig. S19. PXRD patterns of Cd-MOF and the samples recovered after soaking in H2O at different 

temperature for 24 h. 

 

 

     

Chart S1. Chemical structures of nitroaromatics compounds used in the present sensing study. 
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Stern–Volmer constant (KSV) and detection limit calculation: 

Estimation of fluorescence titrations using the following Stern-Volmer equation.S2 

                                                 I0/I = 1+ KSV[A]                                (1) 

Where, I0 = emission intensity without analyte  

I = emission intensity with analyte 

[A] = molar concentration of the analyte  

KSV = Stern-Volmer constant 

The limit of detection (LOD) for the organic amine analytes were calculated using equation 

                                                Detection limit: 3σ/k                    (2) 

                        Where, σ = standard deviation calculated from the blank measurements 

                         k= slope of the titration plot of emission intensity 
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Fig. 20. (a, b) S−V plot for the recognition of 4-NP and 4-NT respectively. (c, d) Limit of detection 

calculation plots for the sensing of 4-NP and 4-NT by Cd-MOF.  
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Fig. S21. The relative fluorescence intensity of Cd-MOF upon addition of solution of 2,4-DNP, 2-

NP, 2-NA respectively. 
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Fig. S22. (a-c) S−V plot for the recognition of 2,4-DNP, 2-NP and 2-NA respectively. (d-f) Limit of 

detection calculation plots for the sensing of 2,4-DNP, 2-NP and 2-NA analytes by Cd-MOF 

respectively. 

(a) 
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(c) (f) 
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Fig. S23. The relative fluorescence intensity of Cd-MOF upon addition of solution of 4-NA, 3-NA, 

3-NBA respectively. 
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Fig. S24. (a-c) S−V plot for the recognition of 4-NA, 3-NA and 3-NBA respectively. (d-f) Limit of 

detection calculation plots for the sensing of 4-NA, 3-NA and 3-NBA analytes by Cd-MOF 

respectively. 
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Fig. S25. The relative fluorescence intensity of Cd-MOF upon addition of solution of 4-NB, 2,4,6-

TNP and 1, 3-DNB, respectively. 

 

 

 

 

 



S23 
 

 

 

 

Fig. S26. (a-c) S−V plot for the recognition of 4-NB, 2,4,6-TNP and 1,3-DNB respectively. (d-f) Limit 

of detection calculation plots for the sensing of 4-NB, 2,4,6-TNP and 1,3-DNB analytes by Cd-MOF 

respectively. 
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Fig. S27. Time dependent fluorescence response of Cd-MOF towards 4-NP, 4-NTand 2,4-DNP. 

 

 

Fig. S28. Relative emission intensity of Cd-MOF upon addition of 50 μL of 4-NP and 4-NT (from 10 

mM stock solution) in the presence of 50 μL of other nitroaromatics in CH3OH.  
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Calculation of binding constant using Benesi-Hildebrand and fluorescence method: 

Calculation of binding constant using Benesi-Hildebrand and fluorescence method: The value of 

binding constant of organic amines with Cd-MOF has been determined from the emission intensity 

data following the modified Benesi–Hildebrand equation.S3 

                      1/∆I = 1/∆Imax+ (1/Kb[C])(1/∆Imax)                            (3) 

Here, ∆I = I–Imin and ∆Imax = Imax–I, where Imin, I, and Imax are the emission intensities of sensor 

material measured in the absence of concern analytes, at an intermediate analyte’s concentration, 

and at a concentration of complete saturation.  

Whereas, Kb and [C] represent the binding constant and concentration of particular analytes, 

respectively. The Kb could be determined from the slope of a straight line of plot 1/(A-Ao) against 

1/[Analyte]. 
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Fig. S29. (a-d) BH plot from the fluorescence titration data of receptor Cd-MOF (suspension) with 

4-NP, 4-NT, 2,4-DNP and 2-NP respectively. 
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Fig. S30. (a-d) BH plot from the fluorescence titration data of receptor Cd-MOF (suspension) with 

2-NA, 4-NA, 3-NA and 3-NBA respectively. 
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Fig. S31. (a-c) BH plot from the fluorescence titration data of receptor Cd-MOF (suspension) with 

4-NB, 2,4,6-TNP and 1,3-DNB respectively.  
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Fig. S32. (a-b) FT-IR patterns of original sample of Cd-MOF (black) and the recovered sample of 

Cd-MOF after each cycle of quenching with 4-NP and 4-NT respectively. 
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Fig. S33. (a-b) PXRD patterns of original sample of Cd-MOF (experimental, red trace; simulated, 

black) and the recovered sample of Cd-MOF after each cycle of quenching with 4-NP and 4-NT 

respectively.  
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Fig. S34. (a-b) Lifetime decay curves of Cd-MOF before and after the addition of 4-NP and 4-NT, 

respectively. 
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Fig. S35. Theoretically optimized HOMO and LUMO energies of L4-py, H2nipa and examined 

nitroaromatics using the B3LYP/6-31G protocol. 
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Fig. S36. (a) XPS spectrum of Cd-MOF before sensing. (b-d) XPS spectrum of Cd-MOF for N 1s, O 

1s, S 2p before sensing. (e) XPS spectrum of Cd-MOF after sensing 4-NP. (f-h) XPS spectrum of Cd-

MOF for N 1s, O 1s, S 2p after sensing 4-NP. (i) XPS spectrum of Cd-MOF after sensing 4-NT. (j-l) 

XPS spectrum of Cd-MOF for N 1s, O 1s, S 2p after sensing 4-NT. 
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Table S1. Crystal data and structure refinement for L4-Py and Cd-MOF. 

 

 

 

 

 

 L4-Py Cd-MOF 

CCDC number    2371129 2371128 

Empirical formula C24H18N4O2S C40H40CdN7O11S 

Formula weight 426.48 939.25 

Temperature [K] 293(2) 220(80) 

Crystal system triclinic monoclinic 

Space group (number) 𝑃1 (2) 𝐶2/𝑐 (15) 

a [Å]  9.3689(3) 37.8579(8) 

b [Å] 12.8121(3) 9.96330(10) 

c [Å] 18.4744(3) 28.3070(6) 

α [°] 98.161(2) 90 

β [°] 90.769(2) 109.014(2) 

γ [°] 111.088(2) 90 

Volume [Å3] 2043.11(9) 10094.5(3) 

Z 4 8 

ρcalc [gcm−3] 1.386 1.236 

μ [mm−1] 0.188 0.530 

F(000) 888 3848 

Crystal colour Colourless  Yellow 

Crystal shape Block  block 

Radiation Mo Kα (λ=0.71073 Å) Mo Kα (λ=0.71073 Å) 

2θ range [°] 6.69 to 54.78 (0.77 Å) 6.25 to 54.91 (0.77 Å) 

Index ranges −12 ≤ h ≤ 12; −15 ≤ k ≤ 16; −23 ≤ l ≤ 
23 

−47 ≤ h ≤ 47; −12 ≤ k ≤ 12; −36  
≤  l  ≤  36 

Reflections collected 19420 68409 

Independent reflections 7699;  Rint = 0.0375; Rsigma = 0.0502 10864; Rint = 0.0624; Rsigma = 
0.0464 

Completeness to θ = 26.000° 91.4 % 99.5 % 

Data / Restraints / Parameters  7699/0/559 10864/495/434 

Absorption correction Tmin/Tmax 
(method) 

 0.962/0.972 
(multi-scan) 

0.57767/1.00000  
(multi-scan) 

Goodness-of-fit on F2  1.118  1.071 

Final R indexes [I≥2σ(I)] R1 = 0.0519; wR2 = 0.1276 R1 = 0.0412; wR2 = 0.1228 

Final R indexes [all data] R1 = 0.0825; wR2 = 0.1423 R1 = 0.0546; wR2 = 0.1367 

Largest peak/hole [eÅ−3] 0.29/−0.24  0.58/-0.53 
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Table S2. Selected bond length and angles for Cd-MOF. 

 

Bond Bond Length Bond Bond Angles 

Cd1–O4#1 2.506(2) O1–Cd1–O2 96.53(9) 

Cd1–O2 2.496(2) O1–Cd1–O5#1 90.57(9) 

Cd1–O5#1 2.322(2) O1–Cd1–N4#2 169.43(9) 

Cd1–O1 2.318(3) O1–Cd1–N1 85.65(9) 

Cd1–O3 2.279(2) O1–Cd1–C8#1 85.98(10) 

Cd1–N4#2 2.364(3) O3–Cd1–O4#1 131.19(7) 

Cd1–N1 2.334(3) O3–Cd1–O2 54.50(7) 

Cd1–C8#1 2.744(3) O3–Cd1–O5#1 77.02(8) 

S1–C18 1.780(3) O3–Cd1–O1 94.53(10) 

S1–C21 1.780(4) O3–Cd1–N4#2 95.91(10) 

Bond Bond Angles O3–Cd1–N1 142.03(9) 

O4#1–Cd1–C8#1 27.10(7) O3–Cd1–C8#1 104.10(8) 

O2–Cd1–O4#1 174.07(7) N4#2–Cd1–O4#1 89.30(8) 

O2–Cd1–C8#1 158.53(8) N4#2–Cd1–O2 88.27(8) 

O5#1–Cd1–O4#1 54.21(7) N4#2–Cd1–C8#1 93.01(9) 

O5#1–Cd1–O2 131.34(7) N1–Cd1–O4#1 86.72(8) 

O5#1–Cd1–N4#2 93.32(8) N1–Cd1–O2 87.69(8) 

O5#1–Cd1–N1 140.93(8) N1–Cd1–N4#2 85.14(10) 

O5#1–Cd1–C8#1 27.19(8) N1–Cd1–C8#1 113.77(9) 

O1–Cd1–O4#1 85.01(9)   
Symmetry transformations used to generate equivalent atoms: (#1) +X, -1+Y, +Z; (#2) 1.5-X, 0.5-Y, 1-Z; (#3) 

+X, 1+Y, +Z.   
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Table S3. Hydrogen bonding for ligand L4-Py. 
 

D–H⋯A [Å] d(D–H) [Å] d(H⋯A) [Å] d(D⋯A) [Å] <(DHA) [°] 

N7–H7⋯O2#1 0.86 2.17 2.929(2) 147.6 

N6–H6⋯N4#2 0.86 2.12 2.964(2) 165.9 

C45–H45⋯O1#3 0.93 2.63 3.547(3) 169.4 

C35–H35⋯N1#3 0.93 2.67 3.344(3) 129.5 

C36–H36⋯O4 0.93 2.33 2.919(3) 121.3 

C39–H39⋯O3 0.93 2.35 2.899(3) 117.7 

N3–H3⋯N5#4 0.86 2.11 2.970(2) 173.9 

N2–H2⋯O3 0.86 2.39 3.131(2) 144.7 

C8–H8⋯S2#5 0.93 2.92 3.441(2) 117.0 

C24–H24⋯O4#6 0.93 2.56 3.464(3) 164.0 

C12–H12⋯O1 0.93 2.31 2.908(3) 121.4 

C15–H15⋯O2 0.93 2.27 2.881(3) 123.1 

C22–H22⋯S2#7 0.93 3.01 3.929(3) 168.9 

Symmetry transformations used to generate equivalent atoms: #1: 1+X, +Y, +Z;   #2: 1+X, +Y, 1+Z;   #3: 1-X, 

1-Y, 1-Z;   #4: +X, +Y, -1+Z;   #5: -1+X, +Y, +Z;   #6: 1-X, 1-Y, -Z;   #7: -X, -Y, -Z.    

 

 

Table S4. Hydrogen bonding for Cd-MOF.  
 

D–H⋯A [Å] d(D–H) [Å] d(H⋯A) [Å] d(D⋯A) [Å] <(DHA) [°] 

O1–H1A⋯O8#1 0.90 2.05 2.816(4) 142.5 

C20–H20⋯O8 0.94 2.23 2.833(4) 121.4 
Symmetry transformations used to generate equivalent atoms: (#1): 1-X, -Y, 1-Z;    

 

Table S5. Fluorescence quantum yields of the L4-Py, H2nipa and Cd-MOF. 

Quantum yield (Φ) is defined as the ratio of the number of photons emitted to the number of photons absorbed. For 

the measurements of quantum yield of L4-py, co-ligand H2nipa, and Cd-MOF, the standards used were 2-Amino-

pyridine in H2SO4, naphthalene in cyclohexane, and 9,10-Diphenylanthracene in cyclohexane, respectively. It is 

important to mention that Cd-MOF exhibits the highest 40.30% (ΦF = 0.40) of fluorescence quantum yields when 

excited at 290 nm. Whereas under identical conditions, ligand L4-py and co-ligand H2nipa show quantum yields of 

25.30% (ΦF = 0.25) and 18.40% (ΦF = 0.18), when excited at 300 and 285 nm, respectively. S4 

 

S.No. Compound Wavelength λex (λem) [nm] Fluorescence 
Quantum Yield (ϕF) 

Stokes Shift 

1 L4-py 300(435) 0.25 135 

2 H2nipa 285(436) 0.18 151 

3 Cd-MOF 290 (444) 0.40 154 
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Table S6. Stern−Volmer (SV) quenching constant and detection limits of all examined analytes. 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sr. No. Nitroanalytes LOD (µM) Ksv (M-1) Kb (M-1) 

1. 2-NA 0.176 1.14 × 104 2.62 × 10-4 

2. 3-NA 0.120 5.23 × 103 3.00 ×10-4 

3. 4-NA 0.170 8.62 × 103 1.06 × 10-3 

4. 2-NP 0.178 1.5 × 103 6.42 × 10-3 

5. 4-NP 0.166 3.09 × 104 5.41 × 10-3 

6. 4-NT 0.184 3.09 × 104 1.37 × 10-2 

7. 4-NB 0.117 7.58 × 103 4.30 × 10-3 

8. 3-NBA 0.158 3.5 × 103 2.8 × 10-4 

9. 1,3-DNB 0.084 9.21 × 103 1.02 × 10-2 

10. 2,4-DNP 0.080 13.2 × 103 1.4 × 10-2 

11. 2,4,6-TNP 0.101 18.2 × 103 1.2 × 10-2 
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Table S7. A comparative list of various fluorescent MOFs including Cd-MOF that have been used 

for sensing of various nitroaromatics. 

CPs / MOFs Analytes 
Quenching 
constant 
(Ksv, M-1) 

Limit of 
detection 

(μM) 
Solvent Ref. 

[Cd(L4-Py)(nipa)(H2O)]n  (Cd-MOF) 4-NP 3.098 × 104 0.166 Methanol 
In this 
work 

[Cd3(BPPA)3(aba)3]n 4-NP 6.74 × 104 
34.48 

ppb 
DMF S5 

[Cd2(HL1)(btc)(H2O)2].3H2O 4-NP 2.69 × 104 0.575 DMF S6 

Zn(DMA)(TBA) 4-NP 4.39 × 104 1.43 Ethanol S7 

[Zn(L2)(H2O)].H2O 4-NP 1.25 × 104 3.74 Water S8 

{[Zn3(mtrb)3(btc)2].3H2O}n 4-NP 1.276 × 104 2.56 Methanol S9 

[Cd(ppvppa)(1,4-NDC)]n 
2,4-DNP/ 

4-NP 
118 / 15 

70 ppm / 

120 ppm 
Water S10 

{[Zn2(L3)(DMF)3]·2DMF·2H2O} 
2,4-DNP/ 

4-NP 

2.40×104, 

1.52×104 

0.77 ppm / 

1.03 ppm 
DMF S11 

(Zn2(NDC)2(bpy)⋅Gx) 

(G = Guest molecules) 

2,4-DNP/ 

4-NP 

1.5 × 10− 4/ 

1.06 × 10− 4 

0.284/ 

0.347 
Ethanol S12 

[Cd(AA)(bpa)(OH2)]n 4-NP 5.07 × 105 -- Water S13 

[Zn2(TCPE)(tta)2]·2DMF·4H2O·2Me2NH2

+ 
4-NP 

1621.97 0.68 
DMF S14 

[Cd3(H2O)3(L4)(tib)2].5DMA.4H2O 4-NP 1.557 × 104 74 DMF S15 

{[(CH3)2NH2]2[Cd3(TCPPDA)2]⋅5DMF⋅8H

2O}n 
4-NP 

3.25 × 105 7.5 
DMF S16 

{(Me2NH2)10[Zn6L4(μ3O)2Zn3]·Gx}n  

(G = Guest molecules) (FJI-C8) 
2,4-DNP 5.11 × 104 2.86 DMF S17 

[Zn4(Hbpvp)2)BTC)3(HCOO)H2O)2]·4H2O 2,4-DNP -- 1.0 Water S18 

{[Zn(L5)]·4H2O·2CH3CN}n 
2,4-DNP/ 

4-NP 

3.07 × 104/ 

8.21 × 104 

8.49/ 

4.49 mM DMF S19 

{(NH2(CH3)2)[Zn4(ddn)2(COO)(H2O)4]·sol

vent}n 
2,4-DNP 

8.93 × 103 1.12 ppm 
DMF S20 

Abbreviation: L4-Py = N,N'-(thiobis(4,1-phenylene))diisonicotinamide; H2nipa = 5-nitroisophthalic acid; BPPA = 

bis(4-(pyridine-4-yl)phenyl)amine), H2aba = 4,4′-azanediyldibenzoic acid, H2L1 = 1-(1H-imidazol-4-yl)-4-(4H-tetrazol-5-
yl)benzene), H3btc = 1,3,5-benzenetricarboxylic acid, H2TBA = 4-(1H-tetrazol-5-yl)-benzoic acid), DMA = 
Dimethylacetamide, H2L2 = 5-(2- methylpyridin-4-yl)isophthalic acid, mtrb = 1,3-bis(1,2,4- triazole-4-
ylmethyl)benzene, ppvppa = N-(pyridin-2-yl)-N-(4-(2-(pyridin-4-yl)vinyl)phenyl)pyridin-2-amine, 1,4-H2NDC = 1,4-
naphthalenedicarboxylic acid, H4L3 = terphenyl-3,3′′,5,5′′-tetracarboxylic acid, NDC = 2,6- naphthalene dicarboxylic 
acid, bpy = 4,4’ bipyridine, G = guest solvent molecules, AA = adipic acid, bpa = 1,2-bis(4- pyridyl)ethane), H4TCPE = 
1,1,2,2-tetra(4-carboxylphenyl)ethylene, 1H-tta = 1H-tetrazole, H6L4 = 5,5’,5’’-((benzene-1,3,5-
tricarbonyl)tris(azanediyl))triisophthalic acid, tib = 1,3,5-tri(1H-imidazol-1-yl)benzene, H4TCPPDA = N,N,N’,N’-
Tetrakis(4-carboxyphenyl)-1,4-phenylenediamine), FJI-C8 (FJI stands for Fujian Institute of Research on the Structure 
of Matter, C stands for Cao’s group, 8 stands for the number of newly synthesized crystals in his group), bpvp = 3,5-
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bis-(2-(pyridin-4-yl)vinyl)pyridine, H2L5 = 5-(3,5-Di-pyr-idin-4-yl-[1,2,4]triazol-1-ylmethyl)-isophthalic acid, H4ddn=3,5-
di(3,5-dicarboxylphenyl)nitrobenzene.  
 
 
 
 

Table S8. Integral Orbital Overlap J(λ) values of nitro-analytes.  

 

Calculation of extent of overlapping.  

The extent of overlapping of emission spectra of Cd-MOF with absorbance spectra of all nitroanalytes 

compounds has been calculated using formula (1) given below.S21 

                                    J(λ) = ∫ 𝐹
∞

0 D(λ) εA(λ) λ4 d λ………………(1) 

Where F(λ) is the corrected fluorescence intensity of the donor (here Cd-MOF) in the range of λ to 

λ+Δλ with total intensity normalized to unity, εA is the molar extinction coefficient of the acceptor 

(here nitroanalytes) at λ in mol-1 cm-1. 
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