Fabrication of an efficient bifunctional acid catalyst based on MIL-88B(Fe) for solvent-free ring-opening of epoxides with alcohols

Mahdiyeh-Sadat Hosseini^a, Alireza Abbasi^a*, Peyman Ghorbani^a, Majid Masteri-Farahani^b

^aSchool of Chemistry, College of Science, University of Tehran, P.O. Box: 14155-6455, Tehran,

Iran

^bFaculty of Chemistry, Kharazmi University, P.O. Box: 15719-14911, Tehran, Iran

Experimental section

Materials and methods

All chemicals including FeCl₃.6H₂O, terephthalic acid, sulfamic acid, styrene oxide, 1,2epoxypropane, 1,2-epoxybutane, epichlorohydrine, cyclohexene oxide, dimethylformamide, methanol, ethanol, n-butanol, n-hexanol, and n-octanol were provided from Merck and Biochem chemical companies and used without further purification.

Fourier transform infrared (FT-IR) was conducted using Perkin–Elmer Spectrum RXI FT-IR spectrometer by using KBr pellets diluted with synthesized materials. The X-ray diffraction patterns (XRD) were recorded by DX-2700BH multi-function diffractometer using Cu ka radiation at $\lambda = 1.54$ Å in the 2 θ range of 5-45°, with the step size of 0.05° and time per step of 1sec. Field emission scanning electron microscopy (FESEM) was carried out by TESCAN MIRA III instrument coupled to energy-dispersive X-ray spectroscopy (EDX) for micro-elemental analysis and mapping. The nitrogen adsorption-desorption isotherms with surface area measurement were performed by BELSORP MINI II instrument from BEL Company with a BEL PREP VAC II degassing device. The surface area was achieved by Brunauer-Emmett-Teller (BET) calculation. The thermogravimetric analysis (TGA) was performed by TGA Q600 instrument (TA

Company, USA). The progress of catalytic reactions was controlled by Agilent 6890N gas chromatography equipped with a capillary column (HP-5) and FID detector.

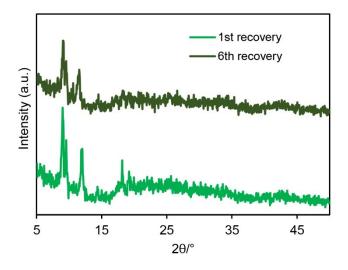


Fig. S1. The XRD pattern of reused MIL-88B(Fe)/SA.

Epoxides	Approximate size (Å)	Products	Approximate size (Å)
<u> </u>	5.9	OCH3 OH	6
	3.5	OH OCH3	5.8
	4.3	OH OCH3	5.5
CI	4.4	CIOCH3	5.3
	4.1	HOOCH3	6.2

Table S1. Approximate size of different epoxides and corresponding products.