Electronic Supplementary Information (ESI)

Chain-based fluorescent Tb^{III} metal-organic framework with good stability as a blue-shift and turn-on sensor toward H₂PO₄⁻

Shixian Xu,^a‡ Na Lu,^b‡ Li Wang,^b and Sui-Jun Liu*^b

^a College of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, Jiangxi Province, P. R. China

^b School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China

**Corresponding author. E-mail: sjliu@jxust.edu.cn (S.-J. Liu). Tel:* +86-797-8312204. *‡These authors contributed equally to this work and should be considered co-first authors.*

Identification code	JXUST-52		
Empirical formula	$C_{60}H_{32}N_6O_{16}S_3Tb_3$		
Formula weight	1665.85		
Temperature/K	293.15		
Crystal system	Triclinic		
Space group	$P^{\overline{1}}$		
a/Å	8.7857(5)		
b/Å	18.8668(11)		
c/Å	20.7919(13)		
α/°	113.758(2)		
β/°	95.709(2)		
$\gamma^{/\circ}$	102.086(2)		
Volume/Å ³	3018.7(3)		
Ζ	2		
$D_{calc} g/cm^3$	1.833		
μ/mm^{-1}	3.654		
Reflections collected/unique	44107/13756		
$R_{ m int}$	0.0625		
$R_1^{a}/wR_2^{b}[I \ge 3\sigma(I)]$	0.0562/0.1401		
R_1^{a}/wR_2^{b} [all data]	0.0786/0.1535		
Goodness-of-fit on F^2	1.036		

Table S1. Crystal data and structure refinements for JXUST-52.

 ${}^{a}R_{1} = \sum (||F_{0}| - |F\mathbf{c}||) / \sum |F_{0}|; {}^{b}\mathbf{w}R_{2} = \left[\sum w(|F_{0}|^{2} - |F\mathbf{c}|^{2})^{2} / (\sum w|F_{0}|^{2})^{2}\right]^{1/2}$

Tb1—O1 ⁱ	2.363(6)	O13 ^v —Tb2—O9 ^{vi}	75.92(17)
Tb1—O6 ⁱⁱⁱ	2.410(6)	O13—Tb2—O9 ^{vi}	143.91(17)
Tb1—O7	2.397(6)	O13—Tb2—O13 ^v	68.06(19)
Tb1—O9 ^{iv}	2.515(6)	O13 ^v —Tb2—O14	81.37(16)
Tb1—O14 ⁱⁱ	2.413(5)	O13—Tb2—O14	103.33(16)
Tb1—O14	2.375(5)	O13—Tb2—O15	73.34(16)
Tb1—O15	2.369(5)	O13 ^v —Tb2—O15	123.32(16)
Tb1—O11 ^v	2.343(6)	O12—Tb2—O4	74.6(2)
O1 ⁱ —Tb1—O6 ⁱⁱⁱ	153.9(2)	O12—Tb2—O5vii	91.7(2)
Ol ⁱ —Tb1—O7	80.3(2)	O12—Tb2—O9 ^{vi}	86.2(2)
O1 ⁱ —Tb1—O9 ^{iv}	86.43(19)	O12—Tb2—O13	86.41(19)
O1 ⁱ —Tb1—O14	104.83(19)	O12—Tb2—O13 ^v	74.63(18)
O1 ⁱ —Tb1—O14 ⁱⁱ	73.81(19)	O12—Tb2—O14	148.52(19)
O1 ⁱ —Tb1—O15	69.70(18)	O12—Tb2—O15	142.06(19)
O6 ⁱⁱⁱ —Tb1—O9 ^{iv}	71.49(19)	O14—Tb2—O4	136.85(18)
O6 ⁱⁱⁱ —Tb1—O14 ⁱⁱ	84.84(19)	O14—Tb2—O9 ^{vi}	68.15(17)
O7—Tb1—O6 ⁱⁱⁱ	108.0(2)	O14—Tb2—O15	68.89(16)
O7—Tb1—O9 ^{iv}	79.44(19)	O15—Tb2—O4	68.08(17)
O7—Tb1—O14 ⁱⁱ	138.88(17)	O15—Tb2—O9 ^{vi}	128.52(17)
O14—Tb1—O6 ⁱⁱⁱ	79.66(18)	Tb3—O3	2.421(6)
O14—Tb1—O7	151.87(18)	Tb3—O4	2.551(6)
O14—Tb1—O9 ^{iv}	128.01(17)	Tb3—O8	2.300(6)
O14 ⁱⁱ —Tb1—O9 ^{iv}	67.72(16)	Tb3—O10 ^{ix}	2.318(5)
O14—Tb1—O14 ⁱⁱ	67.41(18)	Tb3—O13	2.345(5)
O15—Tb1—O6 ⁱⁱⁱ	133.57(19)	Tb3—O15	2.369(5)
O15—Tb1—O7	88.58(18)	Tb3—O1W	2.408(7)
O15—Tb1—O9 ^{iv}	154.86(18)	O2viii—Tb3—O3	91.5(2)
O15—Tb1—O14 ⁱⁱ	110.88(16)	O2 ^{viii} —Tb3—O4	75.1(2)
O15—Tb1—O14	62.28(17)	O2viii—Tb3—O8	141.0(2)
O11v—Tb1—O1i	133.5(2)	O2 ^{viii} —Tb3—O10 ^{ix}	78.6(2)
O11 ^v —Tb1—O6 ⁱⁱⁱ	72.1(2)	O2 ^{viii} —Tb3—O13	79.8(2)
O11 ^v —Tb1—O7	73.5(2)	O2 ^{viii} —Tb3—O15	139.6(2)
O11v—Tb1—O9 ^{iv}	124.3(2)	O2 ^{viii} —Tb3—O1W	71.7(3)
O11 ^v —Tb1—O14	83.85(19)	O3—Tb3—O4	52.36(19)
O11 ^v —Tb1—O14 ⁱⁱ	146.07(19)	O8—Tb3—O3	93.5(2)
O11 ^v —Tb1—O15	71.8(2)	O8—Tb3—O4	135.5(2)
Tb2—O4	2.472(5)	O8-Tb3-O10 ^{ix}	85.6(2)
Tb2—O5 ^{vi}	2.305(6)	O8—Tb3—O13	130.4(2)
Tb2—O9 ^{vii}	2.555(5)	O8—Tb3—O15	78.7(2)

Table S2. Selected bond lengths (Å) and angles (°) for $JXUST-52^{a}$.

Tb2—O13 ^v	2.333(5)	O8—Tb3—O1W	71.6(2)
Tb2—O13	2.313(5)	O10 ^{ix} —Tb3—O3	162.5(2)
Tb2—O12	2.260(5)	O10 ^{ix} —Tb3—O4	135.86(18)
Tb2—O14	2.337(5)	O10 ^{ix} —Tb3—O13	75.72(18)
Tb2—O15	2.370(5)	O10 ^{ix} —Tb3—O15	120.8(18)
O4—Tb2—O9 ^{vi}	143.19(18)	O10 ^{ix} —Tb3—O1W	84.9(2)
O5 ^{vii} —Tb2—O4	75.1(2)	O13—Tb3—O3	116.96(19)
O5 ^{vii} —Tb2—O9 ^{vi}	74.4(2)	O13—Tb3—O4	65.20(17)
O5 ^{vii} —Tb2—O13	141.10(19)	O13—Tb3—O15	72.78(17)
O5 ^{vii} —Tb2—O13 ^v	148.00(19)	O13—Tb3—O1W	148.2(2)
O5 ^{vii} —Tb2—O14	98.4(2)	O15—Tb3—O3	75.9(2)
O5 ^{vii} —Tb2—O15	85.2(2)	O15—Tb3—O1W	139.0(2)
O13—Tb2—O4	66.97(17)	O1W—Tb3—O3	78.3(3)
O13 ^v —Tb2—O4	126.18(17)	O1W—Tb3—O4	118.5(2)

^aSymmetry codes: (i) 1-*x*, -*y*, 1-*z*; (ii) 1-*x*, -*y*, -*z*; (iii) 2-*x*, 1-*y*, 1-*z*; (iv) +*x*, 1+*y*, 1+*z*; (v) 2-*x*, -*y*, -

z; (vi) -1+*x*, -1+*y*, -1+*z*; (vii) 1-*x*, -1-*y*, -1-*z*; (viii) 2-*x*, -*y*, -1-*z*; (ix) 1+*x*, 1+*y*, 1+*z*.

Ions	Label	Shape	Symmetry	Distortion (τ)
	OP-8	Octagon	$D_{8\mathrm{h}}$	30.754
	HPY-8	Heptagonal pyramid	$C_{7\mathrm{v}}$	23.092
	HBPY-8	Hexagonal bipyramid	$D_{6\mathrm{h}}$	15.865
	CU-8	Cube	$O_{ m h}$	10.983
	SAPR-8	Square antiprism	$D_{ m 4d}$	3.878
	TDD-8	Triangular dodecahedron	D_{2d}	1.218
Tb1	JGBF-8	Johnson gyrobifastigium J26	D_{2d}	11.966
	JETBPY-8	Johnson elongated triangular bipyramid J14	$D_{3\mathrm{h}}$	26.460
	JBTPR-8	Biaugmented trigonal prism J50	$C_{2\mathrm{v}}$	2.520
	BTPR-8	Biaugmented trigonal prism	$C_{2\mathrm{v}}$	2.565
	JSD-8	Snub diphenoid J84	D_{2d}	2.830
	TT-8	Triakis tetrahedron	$T_{\rm d}$	11.405
	ETBPY-8	Elongated trigonal bipyramid	$D_{3\mathrm{h}}$	24.329
	OP-8	Octagon	$D_{8\mathrm{h}}$	32.138
	HPY-8	Heptagonal pyramid	$C_{7\mathrm{v}}$	23.410
	HBPY-8	Hexagonal bipyramid	$D_{6\mathrm{h}}$	12.456
	CU-8	Cube	$O_{ m h}$	6.524
	SAPR-8	Square antiprism	D_{4d}	1.499
	TDD-8	Triangular dodecahedron	D_{2d}	1.890
Tb2	JGBF-8	Johnson gyrobifastigium J26	D_{2d}	14.119
	JETBPY-8	Johnson elongated triangular bipyramid J14	$D_{3\mathrm{h}}$	27.074
	JBTPR-8	Biaugmented trigonal prism J50	$C_{2\mathrm{v}}$	3.305
	BTPR-8	Biaugmented trigonal prism	$C_{2\mathrm{v}}$	2.753
	JSD-8	Snub diphenoid J84	D_{2d}	5.405
	TT-8	Triakis tetrahedron	$T_{\rm d}$	7.122
	ETBPY-8	Elongated trigonal bipyramid	$D_{3\mathrm{h}}$	23.765
	OP-8	Octagon	$D_{8\mathrm{h}}$	29.753
	HPY-8	Heptagonal pyramid	$C_{7\mathrm{v}}$	22.116
	HBPY-8	Hexagonal bipyramid	$D_{6\mathrm{h}}$	13.858
	CU-8	Cube	$O_{ m h}$	8.921
	SAPR-8	Square antiprism	$D_{ m 4d}$	2.233
	TDD-8	Triangular dodecahedron	D_{2d}	2.811
Tb3	JGBF-8	Johnson gyrobifastigium J26	D_{2d}	12.051
	JETBPY-8	Johnson elongated triangular bipyramid J14	$D_{3\mathrm{h}}$	26.651
	JBTPR-8	Biaugmented trigonal prism J50	$C_{2\mathrm{v}}$	2.068
	BTPR-8	Biaugmented trigonal prism	C_{2v}	1.582
	JSD-8	Snub diphenoid J84	D_{2d}	4.542
	TT-8	Triakis tetrahedron	$T_{\rm d}$	9.599
	ETBPY-8	Elongated trigonal bipyramid	$D_{3\mathrm{h}}$	21.862

Table S3. The coordination configuration of Tb^{III} ions in JXUST-52.

LMOF	Fluorescent Response	Anions	Detection Limit	Reference
JXUST-52	Turn-on response	$\mathrm{H_2PO_4^-}$	0.016 mM	This work
Eu-MOF	Turn-off response	$\mathrm{H_2PO_4}^-$	0.70 mM	S 1
JXUST-13	Turn-on response	$\mathrm{H_2PO_4^-}$	2.70 µmol/L	S2
UiO-66-NH ₂	Turn-on response	PO ₄ ³⁻	1.25 mM	S3
Cd-MOF	Turn-off response	ClO-	0.18 µM	S4
Eu-MOF	Turn-off response	$Cr_2O_7^{2-}$	$1.14 \times 10^{-4} \text{ mol } L^{-1}$	S5
Zn-MOF	Turn-off response	CrO ₄ ²⁻	5.25 µM	S 6
CP-1	Turn-off response	MnO ₄ -	1.291 μM	S7
Al-MOF	Turn-on response	F-	0.31 µM	S8

Table S4. The sensing properties of LMOF with other reported sensors for anions.

Fig. S2 The PXRD patterns of JXUST-52 and JXUST-52@H₂PO₄⁻.

Fig. S3 The experimental PXRD patterns of JXUST-52 immersed in aqueous solutions with different pH values for 24 hours.

Fig. S5 The TGA curve of JXUST-52.

Fig. S6 The SEM image of the crystalline sample for JXUST-52.

Fig. S7 The excitation and emission spectra of H_2BTDB .

Fig. S8 The fluorescence intensities of H_2BTDB upon addition of different anions in DMF solutions.

Fig. S9 The fluorescence intensities of **JXUST-52** immersed in aqueous solution with different pH values.

Fig. S10 The fluorescence lifetime decay diagrams of (a) JXUST-52 and (b) JXUST-52(\hat{a}) H₂PO₄⁻.

References

S1 T. Wiwasuku, A. Chuaephon, T. Puangmali, J. Boonmak, S. Ittisanronnachai, V. Promarak and S. Youngme, *RSC Adv.*, 2023, **13**, 10384-10396.

S2 S. Yao, H. Xu, T. Zheng, Y. Li, H. Huang, J. Wang, J. Chen, S. Liu, and H. Wen, *Chin. Chem. Lett.*, 2023, **34**, 107532.

S3 J. Yang, Y. Dai, X. Zhu, Z. Wang, Y. Li, Q. Zhuang, J. Shi and J. Gu, *J. Mater. Chem. A.*, 2015, **3**, 7445-7452.

S4 Y. N. Wang, H. Xu, S. D. Wang, R. Y. Mao, L. M. Wen, S. Y. Wang, L. J. Liu, Y. Sun, S. Q. Lu, F. Wang and Q. F. Yang, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 2023, **286**, 121952.

S5 J. Y. Zou, L. Li, S. Y. You, Y. W. Liu, H. M. Cui, J. Z. Cui and S. W. Zhang, *Dalton Trans.*, 2018, **47**, 15694-15702.

S6 S. Chen, Y. Dong, H. Song and L. Gui, J. Solid State Chem., 2023, 328, 124335.
S7 F. Su, X. Y. Liu, S. D. Li, L. Sun, L. T. Wu, C. Han and Z. J. Wang, J. Mol. Struct., 2024, 1298, 136975.

S8 D. H. Xie, X. Ge, W. X. Qin and Y. X. Zhang, Chinese J. Chem. Phys., 2021, 34, 227-237.