1	Supporting Information (SI)		
2			
3			
4	Reactive Crystallization of Li₂CO₃ in LiOH/KOH Solutions:		
5	Solubility, Nucleation and Carbonization		
6			
7	Zhuofan Chen ^{a, b} , Yuhao Chen ^{a, b} , Youfa Jiang ^{a, b} , Chenglin Liu ^{a, b, *} , Jianguo Yu ^{a, b}		
8			
9	^a National Engineering Research Center for Integrated Utilization of Salt Lake		
10	Resources, East China University of Science and Technology, Shanghai 200237, PR		
11	China		
12	^b Joint International Laboratory for Potassium and Lithium Strategic Resources, Eas		
13	China University of Science and Technology, Shanghai 200237, PR China		
14			
15			
16			
17	*Email: Chenglin Liu (liuchenglin@ecust.edu.cn)		
18	*Email: Jianguo Yu (jgyu@ecust.edu.com)		

The concentration of OH^- and CO_3^{2-} in the solution was determined by titration, 1 according to the Geology and Minerals Industry Standard (DZ/T 0064.49-1993) in 2 China. The solution to be measured and 4 drops of phenolphthalein solution (10g/L) 3 were added to a conical flask, and a titration with hydrochloric acid (0.05 mol/L) was 4 implemented until the red color just disappeared. 4 drops of methyl orange solution (0.5 5 g/L) was then added to the solution, and a repeated titration was implemented until the 6 7 solution changed from yellow to orange. Table S1 demonstrates the calculation of the 8 relevant ion concentrations.

Conditions	Contained ions	Concentration calculation
<i>V</i> ₁ > <i>V</i> ₂	OH ⁻ CO ² ₃ ⁻	OH ⁻ (mg/L) = $\frac{c \times (V_1 - V_2) \times 17.01}{V} \times 1000$ CO ² ₃ (mg/L) = $\frac{c \times 2V_2 \times 30.01}{V} \times 1000$
$V_1 = V_2$	CO ² ₃	$\text{CO}_{3}^{2-} (\text{mg/L}) = \frac{c \times 2V_1 \times 30.01}{V} \times 1000$
<i>V</i> ₁ < <i>V</i> ₂	CO ² ₃ ⁻ HCO ₃ ⁻	$CO_{3}^{2} (mg/L) = \frac{c \times 2V_{1} \times 30.01}{V} \times 1000$ $HCO_{3}^{2} (mg/L) = \frac{c \times (V_{2} - V_{1}) \times 61.02}{V} \times 1000$
V ₁ = 0	HCO ⁻ 3	HCO ₃ (mg/L) = $\frac{c \times V_2 \times 61.02}{V} \times 1000$
V ₂ = 0	OH-	$OH^{-} (mg/L) = \frac{c \times V_1 \times 17.01}{V} \times 1000$

9 **Table S1.** Concentration calculation of OH^{-} , CO_{3}^{2} and HCO_{3}^{-} in solution

10 where *c* represents the concentration of hydrochloric acid, mol/L; V_1 represents the volume of 11 hydrochloric acid consumed in the titration when phenolphthalein is used as indicator, mL; V_2 12 represents the volume of hydrochloric acid consumed in the titration when orange solution is used 13 as indicator, mL; *V* represents the volume of the solution to be measured.

14

15 The Raman spectra (DRX, Thermo Fisher, USA) of the crystallization mother

1 liquor at different times were shown in Figure S2. With the introduction of CO_2 , peak 2 1 appeared at Raman shift of 1065 cm⁻¹, and its intensity gradually increased, 3 corresponding to the CO symmetric stretching vibration of $CO_3^{2^-}$. Peak 2 appeared at 4 Raman shifts of 1016 cm⁻¹ and peak 3 appeared at 1364 cm⁻¹, corresponding to the C-5 OH stretching vibration and the CO symmetric stretching vibration of HCO_3^- , 6 respectively, which also confirmed the formation of HCO_3^- in reaction (d). The 7 intensities of these peaks gradually increased with the continuous introduction of CO_2 .

Figure S2. Concentration of carbonate ion versus time at different temperatures