Structure, Magnetic Properties and Fluorescence Selectivity

of 1D Chain Complexes Based on Pyrazolyl Nitronyl Nitroxide Radical

Jiamin Chu^a, Yi Liu^a, Jing Li^a, Mei Zhu^{*a}

^aSchool of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

Fig. S1 The IR spectrum of complex 1.

Fig. S2 The IR spectrum of complex 2.

Fig. S3 The IR spectrum of complex 3.

complex	Main IR absorption(cm ⁻¹)				
Gd	$\nu_{(C-H)}$ =2946,3000	$v_{(C=O)}=1653$	v _(N-O) =1529	$v_{(N-O)} = 1357$	$v_{(C-N)}=1257$
	v _(C-O) =1199	$v_{(N-N)} = 1146$	$v_{(Benzene ring fi})$	ngerprint region)=7	99, 661, 584
Tb	ν _(C-H) =2946,3000	$v_{(C=O)}=1655$	v _(N-O) =1529	v _(N-O) =1356	v _(C-N) =1256
	v _(C-O) =1202	$v_{(N-N)}=1149$	$v_{(Benzene ring fi})$	ngerprint region)=7	97, 661, 585
Dy	ν _(C-H) =2946,3000	v _(C=O) =1652	v _(N-O) =1530	v _(N-O) =1359	v _(C-N) =1256
	v _(C-O) =1199	$v_{(N-N)} = 1149$	$v_{(Benzene ring fi})$	ngerprint region)=7	98, 661, 585

Table S1 The infrared spectra for complexes 1-3.

Fig. S4 Crystal structure of complex 2 (top) and coordination polyhedron of Tb (bottom)

Fig. S5 Crystal structure of complex 3 (top) and coordination polyhedron of Dy (bottom)

Fig. S6 Crystal packing diagram of complex 2.

Fig. S7 Crystal packing diagram of complex 3.

Bonds			
Gd(1)-O(1)	2.369(5)	Cu(1)-N(5)	2.008(6)
Gd(1)-O(10)	2.330(5)	Cu(1)-O(4)	2.043(5)
Gd(1)-O(11)	2.366(5)	Cu(1)-O(5)	2.297(5)
Gd(1)-O(12)	2.366(5)	Cu(1)-O(6)	2.034(5)
Gd(1)-O(13)	2.416(5)	Cu(1)-O(7)	2.317(5)
Gd(1)-O(14)	2.353(4)	N(2)-O(2)	1.278(8)
Gd(1)-O(15)	2.427(5)	N(8)-O(9)	1.269(9)
Gd(1)-O(16)	2.353(5)	O(1)-N(1)	1.308(7)
Cu(1)-N(4)	2.036(6)	O(10)-N(7)	1.319(8)
Angles			
N(1)-O(1)-Gd(1)	135.1(4)	O(16)-Gd(1)-O(1)	94.57(18)
N(7)-O(10)-Gd(1)	134.9(4)	O(16)-Gd(1)-O(11)	75.40(18)
O(1)-Gd(1)-O(13)	73.42(17)	O(16)-Gd(1)-O(12)	147.45(18)
O(1)-Gd(1)-O(15)	146.11(16)	O(16)-Gd(1)-O(13)	73.65(17)
O(10)-Gd(1)-O(1)	140.01(18)	O(16)-Gd(1)-O(15)	72.15(17)
O(10)-Gd(1)-O(11)	72.77(18)	C(17)-N(4)-Cu(1)	125.6(5)
O(10)-Gd(1)-O(12)	75.71(18)	C(28)-N(5)-Cu(1)	125.4(5)

 Table S2 Selected bond lengths (Å) and angles (°) for complex 1.

O(10)-Gd(1)-O(13)	146.25(18)	N(3)-N(4)-Cu(1)	128.4(4)
O(10)-Gd(1)-O(14)	92.45(17)	N(4)-Cu(1)-O(4)	90.4(2)
O(10)-Gd(1)-O(15)	73.87(17)	N(4)-Cu(1)-O(5)	116.0(2)
O(10)-Gd(1)-O(16)	101.66(17)	N(4)-Cu(1)-O(7)	83.8(2)
O(11)-Gd(1)-O(1)	76.46(18)	N(5)-Cu(1)-N(4)	92.8(2)
O(11)-Gd(1)-O(12)	72.86(19)	N(5)-Cu(1)-O(4)	166.1(2)
O(11)-Gd(1)-O(13)	134.33(17)	N(5)-Cu(1)-O(5)	85.1(2)
O(11)-Gd(1)-O(15)	126.78(18)	N(5)-Cu(1)-O(6)	89.5(2)
O(12)-Gd(1)-O(1)	71.21(18)	N(5)-Cu(1)-O(7)	115.2(2)
O(12)-Gd(1)-O(13)	126.01(17)	N(6)-N(5)-Cu(1)	128.7(4)
O(12)-Gd(1)-O(15)	134.63(17)	O(4)-Cu(1)-O(5)	81.4(2)
O(13)-Gd(1)-O(15)	72.93(16)	O(4)-Cu(1)-O(7)	78.6(2)
O(14)-Gd(1)-O(1)	99.88(17)	O(5)-Cu(1)-O(7)	151.9(2)
O(14)-Gd(1)-O(11)	146.93(18)	O(6)-Cu(1)-N(4)	164.3(2)
O(14)-Gd(1)-O(12)	74.88(17)	O(6)-Cu(1)-O(4)	91.0(2)
O(14)-Gd(1)-O(13)	72.56(16)	O(6)-Cu(1)-O(5)	79.6(2)
O(14)-Gd(1)-O(15)	73.65(17)	O(6)-Cu(1)-O(7)	81.2(2)
O(14)-Gd(1)-O(16)	137.41(17)		

Table S3 Selected bond lengths (Å) and angles (°) for complex 2.

Bonds			
Tb(1)-O(1)	2.370(8)	Cu(1)-O(00S)	2.324(13)
Tb(1)-O(10)	2.320(8)	Cu(1)-O(4)	2.333(15)
Tb(1)-O(11)	2.352(9)	Cu(1)-O(5)	2.052(14)
Tb(1)-O(12)	2.345(8)	Cu(1)-O(6)	2.017(8)
Tb(1)-O(13)	2.348(7)	Cu(1)-O(7)	2.341(8)
Tb(1)-O(14)	2.407(8)	Cu(1)-O(17)	2.051(13)
Tb(1)-O(15)	2.372(8)	N(2)-O(2)	1.291(14)
Tb(1)-O(16)	2.346(7)	N(8)-O(9)	1.282(14)
Cu(1)-N(4)	2.024(10)	O(1)-N(1)	1.283(12)
Cu(1)-N(5)	1.986(10)	O(10)-N(7)	1.314(13)
Angles			

N(1)-O(1)-Tb(1)	135.4(8)	O(16)-Tb(1)-O(15)	73.6(3)
N(7)-O(10)-Tb(1)	134.9(7)	C(17)-N(4)-Cu(1)	125.7(8)
O(1)-Tb(1)-O(14)	147.2(3)	C(28)-N(5)-Cu(1)	124.2(10)
O(1)-Tb(1)-O(15)	73.8(3)	N(3)-N(4)-Cu(1)	128.0(7)
O(10)-Tb(1)-O(1)	138.7(3)	N(4)-Cu(1)-O(00S)	116.5(6)
O(10)-Tb(1)-O(11)	72.7(3)	N(4)-Cu(1)-O(17)	91.1(10)
O(10)-Tb(1)-O(12)	74.8(3)	N(4)-Cu(1)-O(4)	114.6(13)
O(10)-Tb(1)-O(13)	102.3(3)	N(4)-Cu(1)-O(5)	88.8(13)
O(10)-Tb(1)-O(14)	74.1(3)	N(4)-Cu(1)-O(7)	84.1(3)
O(10)-Tb(1)-O(15)	147.2(3)	N(5)-Cu(1)-N(4)	93.4(4)
O(10)-Tb(1)-O(16)	91.9(3)	N(5)-Cu(1)-O(00S)	80.9(6)
O(11)-Tb(1)-O(1)	75.4(3)	N(5)-Cu(1)-O(17)	163.3(10)
O(11)-Tb(1)-O(14)	127.4(3)	N(5)-Cu(1)-O(4)	90.6(8)
O(11)-Tb(1)-O(15)	133.9(3)	N(5)-Cu(1)-O(5)	169.7(13)
O(12)-Tb(1)-O(1)	70.7(3)	N(5)-Cu(1)-O(6)	89.6(4)
O(12)-Tb(1)-O(11)	71.6(3)	N(5)-Cu(1)-O(7)	116.4(3)
O(12)-Tb(1)-O(13)	147.2(3)	N(6)-N(5)-Cu(1)	128.7(7)
O(12)-Tb(1)-O(14)	134.5(3)	O(00S)-Cu(1)-O(7)	153.3(6)
O(12)-Tb(1)-O(15)	126.6(3)	O(17)-Cu(1)-O(00S)	82.7(10)
O(12)-Tb(1)-O(16)	75.1(3)	O(17)-Cu(1)-O(7)	80.0(11)
O(13)-Tb(1)-O(1)	94.8(3)	O(4)-Cu(1)-O(7)	146.9(7)
O(13)-Tb(1)-O(11)	76.3(3)	O(5)-Cu(1)-O(4)	79.4(13)
O(13)-Tb(1)-O(14)	72.3(3)	O(5)-Cu(1)-O(7)	73.8(14)
O(13)-Tb(1)-O(15)	73.0(3)	O(6)-Cu(1)-N(4)	164.9(3)
O(15)-Tb(1)-O(14)	73.5(3)	O(6)-Cu(1)-O(00S)	78.7(10)
O(16)-Tb(1)-O(1)	100.4(3)	O(6)-Cu(1)-O(17)	90.1(12)
O(16)-Tb(1)-O(11)	146.0(3)	O(6)-Cu(1)-O(4)	80.1(12)
O(16)-Tb(1)-O(13)	137.5(3)	O(6)-Cu(1)-O(5)	90.8(15)
O(16)-Tb(1)-O(14)	73.5(2)	O(6)-Cu(1)-O(7)	81.3(3)

		(11) 1111 1119102 () 101 0	empren et
Bonds			
Dy(1)-O(1)	2.345(5)	Cu(1)-N(5)	2.001(7)
Dy(1)-O(10)	2.321(5)	Cu(1)-O(4)	2.307(7)
Dy(1)-O(11)	2.396(5)	Cu(1)-O(5)	2.039(7)
Dy(1)-O(12)	2.345(5)	Cu(1)-O(6)	2.021(6)
Dy(1)-O(13)	2.337(6)	Cu(1)-O(7)	2.314(6)
Dy(1)-O(14)	2.352(5)	N(1)-O(2)	1.272(10)
Dy(1)-O(15)	2.348(5)	N(7)-O(9)	1.277(10)
Dy(1)-O(16)	2.386(5)	O(1)-N(2)	1.294(8)
Cu(1)-N(4)	2.050(7)	O(10)-N(8)	1.311(9)
Angles			
N(2)-O(1)-Dy(1)	135.5(5)	O(14)-Dy(1)-O(16)	126.15(18)
N(8)-O(10)-Dy(1)	134.9(5)	O(15)-Dy(1)-O(11)	73.69(18)
O(1)-Dy(1)-O(11)	146.5(2)	O(15)-Dy(1)-O(14)	74.6(2)
O(1)-Dy(1)-O(12)	94.23(19)	O(15)-Dy(1)-O(16)	72.54(18)
O(1)-Dy(1)-O(14)	71.61(19)	O(16)-Dy(1)-O(11)	73.15(19)
O(1)-Dy(1)-O(15)	100.08(19)	C(17)-N(4)-Cu(1)	125.2(6)
O(1)-Dy(1)-O(16)	73.61(19)	C(28)-N(5)-Cu(1)	126.5(6)
O(10)-Dy(1)-O(1)	139.2(2)	N(3)-N(4)-Cu(1)	128.2(5)
O(10)-Dy(1)-O(11)	73.6(2)	N(4)-Cu(1)-O(4)	115.5(2)
O(10)-Dy(1)-O(12)	101.95(19)	N(4)-Cu(1)-O(7)	84.0(2)
O(10)-Dy(1)-O(13)	73.1(2)	N(5)-Cu(1)-N(4)	93.0(3)
O(10)-Dy(1)-O(14)	75.42(19)	N(5)-Cu(1)-O(4)	84.9(3)
O(10)-Dy(1)-O(15)	92.5(2)	N(5)-Cu(1)-O(5)	165.2(3)
O(10)-Dy(1)-O(16)	146.2(2)	N(5)-Cu(1)-O(6)	90.4(3)
O(12)-Dy(1)-O(11)	72.37(19)	N(5)-Cu(1)-O(7)	116.3(3)
O(12)-Dy(1)-O(14)	147.8(2)	N(6)-N(5)-Cu(1)	128.2(5)
O(12)-Dy(1)-O(15)	137.30(19)	O(4)-Cu(1)-O(7)	151.3(2)
O(12)-Dy(1)-O(16)	73.40(19)	O(5)-Cu(1)-N(4)	90.5(3)
O(13)-Dy(1)-O(1)	76.0(2)	O(5)-Cu(1)-O(4)	80.6(3)

Table S4 Selected bond lengths (Å) and angles (°) for complex 3.

O(13)-Dy(1)-O(11)	126.64(18)	O(5)-Cu(1)-O(7)	78.4(2)
O(13)-Dy(1)-O(12)	75.2(2)	O(6)-Cu(1)-N(4)	164.7(3)
O(13)-Dy(1)-O(14)	73.4(2)	O(6)-Cu(1)-O(4)	79.6(2)
O(13)-Dy(1)-O(15)	147.3(2)	O(6)-Cu(1)-O(5)	90.0(3)
O(13)-Dy(1)-O(16)	133.9(2)	O(6)-Cu(1)-O(7)	81.1(2)
O(14)-Dy(1)-O(11)	134.0(2)		

Fig. S8 Powder X-ray diffraction patterns of complexes 1-3.

Fig. S9 The M vs. H plots of complex 2 at 2.0 K

Fig. S10 The *M* vs. *H* plots of complex 3 at 2.0 K

Fig. S11 Temperature dependence of the in-phase and out-of-phase components of the ac magnetic susceptibility for complex 2 (left) and 3 (right) in zero dc fields.

Fig. S12 Extractive $\ln(\chi''/\chi')$ vs 1/T plot for complex **2** (solid-lines: fitting curves).

Fig. S13 Temperature-dependent ac signals for 3 at a 3kOe dc field.

Fig. S14 Excitation (blue) and emission (red) spectra of complex 2 in aqueous solution.

Fig. S15 Luminescence intensity of the transition (546 nm) of complex 2 in different cations suspension system. I and I_0 denote the fluorescence intensity of complex 2 in cation suspension system and water suspension system, respectively.

Fig. S16 Comparison of the luminescence intensity of 2 in the presence of mixed cations.

Fig. S17 The Stern-Volmer plot of 2 in the presence of $Cr_2O_7^{2-}$, the red line is linear fitting.

Fig. S18 PXRD patterns of complex 2 after soaking in $Cr_2O_7^{2-}$ and Fe^{3+} ions.

Fig. S19 The UV-vis absorption spectra of $Cr_2O_7^{2-}$ (red) and Fe^{3+} (black), and the excitation spectra of complex 2 (blue).

Table S5 Comparison of $Cr_2O_7^{2-}$ ion detection limits for Complex 2 and some fluorescent materials.

Complexes	$K_{sv}(M^{-1})$	LOD(M)	Ref.
In/Eu-CBDA ^[a]	1.08×10 ⁴	2.15×10 ⁻⁴	1
$[Eu(L)(HCOO)(H_2O)]_n^{[b]}$	2762.6	1×10 ⁻⁵	2
$[Eu(HL)(H_2O)_2(NO_3)] \cdot NO_3^{[c]}$	7.52×10^4	1.7×10 ⁻⁵	3
$\{[Eu(BCEbpy)(H_2O)_4] [Co^{III}(CN)_6] \cdot 4H_2O\}_n^{[d]}$	4.31×10 ³	9.6×10 ⁻⁶	4
$[Eu_2(phen)_2(bpdc)_3(H_2O)_2]_n \cdot 6nH_2O^{[e]}$	5.85×10 ⁴	6.76×10-6	5
$\{[Eu_{2}L_{2}(DMF)_{4}]\}_{n}^{[f]}$	1.13×10 ⁵	4.01×10-6	6
[Eu(hfac) ₃ (NITPh-DOMe) ₂] ^[g]	2.339×10 ⁴	1×10-7	7
$[Tb(HL)(H_2O)_2(NO_3)] \cdot NO_3^{[c]}$	4.99×10 ⁴	2.5×10-5	3
$[Tb(L)(HCOO)(H_2O)]_n^{[b]}$	2133.5	2.1×10-5	2
In/Tb-CBDA ^[a]	1.72×10 ⁴	8.72×10 ⁻⁶	1
$[Tb_2(phen)_2(bpdc)_3(H_2O)_2]_n \cdot 6nH_2O^{[e]}$	6.97×10 ⁴	6.73×10 ⁻⁶	5
$\{[Tb_3(bcbp)_3(NO_3)_7] \cdot NO_3 \cdot ClO_4\}_n^{[h]}$	1.40×10 ⁴	5.6×10-6	8
$[Tb(Hbptc)(H_2O)_4] \cdot H_2O^{[i]}$	1.27×10 ⁴	2.36×10-6	9
$[Tb(hfac)_3(NIT-Ph-3-COOMe)_2] \cdot 0.5C_7H_{16}^{[j]}$	6.13×10 ⁵	1.01×10 ⁻⁷	10
[Tb(hfac) ₃ (NITPh-(OCH ₃) ₂) ₂] ^[k]	2×10 ⁴	1×10-7	11
[Tb(hfac) ₃ (NITPh-Pa) ₂][0.5CH ₃ (CH ₂) ₅ CH ₃] ^[1]	19860.68	1×10 ⁻⁸	12
[TbCu(hfac)5(NIT-4-OMe-3PyzPh)2]n	6.27×10 ⁵	2.92×10 ⁻⁷	Our work

[a] CBDA = 5,5'-(carbonylbis(azanediyl))-diisophthalic acid

[b] $H_2L = 5-((2'-cyano-[1,1'-biphenyl]-4-yl)methoxy)$ isophthalic acid

[c] $H_2L = 4-(3,5-dicarboxylphenyl)-2-methylpyridine$

[d] BCEbpy = N, N'-bis(carboxymethyl)- 4,4'-bipyridinium dibromide

[e] phen = π -conjugated 1,10-phenanthroline, H₂bpdc = 2,2' -bipyridine-3,3' -dicarboxylate

[f] $H_3L = 5$ -(4-carboxybenzyloxy) isophthalic acid

[g] NITPh-DOMe = 2-(3, 4 - dioxylmethylene-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide

[h] $H_2bcbpCl_2 = 1,1$ '-bis(4-carboxyphenyl)(4,4'-bipyridinium) dichloride

[i] H_4 bptc = 2, 3, 3', 4'-biphenyl tetracarboxylic acid

 $\label{eq:intermediate} [j] NITPh-(OCH_3)_2 = 2-(3',4'-dimethoxy-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide \\ [k] NIT-Ph-3-COOMe = 2-(3-(methoxycarbonyl)-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide \\ oxide \\ \end{tabular}$

[1] NITPh-Pa = 2-(3',4'-dioxylmethylene-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide

Reference

- 1. Y. X. Zhang, Y. T. Ying, M. Feng, L. Wu, D. M. Wang and C. X. Li, *New J. Chem.*, 2020, **44**, 12748-12754.
- 2. Z. Sun, M. Yang, Y. Ma and L. C. Li, Cryst. Growth Des. 2017, 17, 4326-4335.
- W. Gao, F. Liu, B. Y. Zhang, X. M. Zhang, J. P. Liu, E. Q. Gao and Q. Y. Gao, Dalton Trans., 2017,46, 13878-13887.
- 4. M. H. Li, S. L. Lv, M. H. You and M. J. Lin, *Dalton Trans.*, 2020,49, 13083-13089.
- 5. L. Zhang, X. Liu, J. Zhou, C. M. Huang and C. R. Ouyang, *Dyes Pigments*, 2022, **203**, 110384.
- Y. S. Xue, J. Ding, D. L. Sun, W. W. Cheng, X. R. Chen, X. C. Huang and J Wang, *CrystEngComm*, 2021, 23, 3838-3848.
- 7. Y. Y. Yuan, Y. J. Sun, P. J. Liu, C. X. Zhang and Q. L. Wang, *Inorg. Nano-Met. Chem.*, 2018, **48**, 454-460.
- 8. Z. Y. Li, W. Y. Cai, X. M. Yang, A. L. Zhou, Y. Zhu, H. Wang, X. Zhou, K. C. Xiong, Q. F. Zhang and Y. L. Gai, *Cryst. Growth Des.*, 2020, **20**, 3466-3473.
- A. N. Wang, S. D. Wang, W. J. Wang, X. X. Hao and H. Qi, Spectrochim. Acta A, 2020, 229, 117915.
- 10. Y. Liu, Q. Zhong, J. M. Chu and M. Zhu, J. Mol. Struct. 2024, 1311, 138479.
- 11. P. P. Sun, S. L. Yang, C. X. Zhang and Q. L. Wang, *Polyhedron*, 2018, **156**, 155-160.
- 12. S. L. Yang, R. R. Wang, X. J. Jin, C. X. Zhang and Q. L. Wang, *Polyhedron* 2018, **144**, 101-106.