Supporting Information

Chiral-Driven Formation of Hybrid Cyanurates with Large Birefringence

Yue Zhao^{*a,b,c*}, Chunli Hu^{*a*}, Pengfei Chen^{*a,b,c*}, Mingzhi Zhang^{*a,c*} and Jianggao Mao^{**a,b,c*}

a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.

b School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China

c University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

* Corresponding Authors: mjg@fjirsm.ac.cn

Table of Contents

Section	Title	Page
Table S1	Fractional atomic coordinates (×10 ⁴) and equivalent isotropic displacement parameters (Å ² ×10 ³) for <i>rac-α</i> -MBACY, <i>R-α</i> -MBACY and <i>S-α</i> -MBACY. Useq is defined as 1/3 of the trace of the orthogonalised Uij tensor.	S3
Table S2	Selected bond lengths (Å) for <i>rac-α</i> -MBACY, <i>R-α</i> -MBACY and <i>S-α</i> -MBACY.	S7
Table S3	Hydrogen bond lengths (Å) for <i>rac-α</i> -MBACY, <i>R-α</i> -MBACY and <i>S-α</i> -MBACY.	S9
Figure S1	The photographs of crystals for <i>rac-a</i> -MBACY (a), <i>R-a</i> -MBACY (b) and <i>S-a</i> -MBACY(c).	S10
Figure S2	Simulated and experimental powder X-ray diffraction patterns of <i>rac</i> - α -MBACY (a), <i>R</i> - α -MBACY (b) and <i>S</i> - α -MBACY(c).	S10
Figure S3	The double hydrogen-bonded layer parallel to the bc-plane in rac - α -MBACY.	S11
Figure S4	The TGA curves of <i>rac-α</i> -MBACY (a), <i>R-α</i> -MBACY (b).	S11
Figure S5	The IR spectra of <i>rac-α</i> -MBACY (a), <i>R-α</i> -MBACY (b) and <i>S-α</i> -MBACY(c).	S12
Figure S6	The SHG signals of <i>R</i> - α -MBACY (a) and <i>S</i> - α -MBACY (b) compared with KDP as the standard.	S12
Figure S7	The electronic band structures of <i>rac-</i> α -MBACY (a), <i>R</i> - α -MBACY (b) and <i>S</i> - α -MBACY (c).	S13
Figure S8	Total and partial density of states for <i>rac-α</i> -MBACY (a), <i>R-α</i> -MBACY (b) and <i>S-α</i> -MBACY(c).	S14

Atom	X	У	Z	U(eq)		
<i>rac-α</i> -MBACY						
C(1)	5519.0(8)	7956.2(17)	3957.0(10)	31.9(3)		
C(2)	6046.4(7)	4809.5(17)	4815.2(9)	27.3(2)		
C(3)	6367.4(7)	7751.0(18)	5882.7(10)	29.2(3)		
C(4)	8325.8(9)	2669(2)	7333.3(11)	43.2(3)		
C(5)	8806.1(11)	924(3)	7366.9(15)	58.7(4)		
C(6)	9427.3(13)	699(4)	6651.9(18)	74.6(6)		
C(7)	9565.7(12)	2185(4)	5892.9(17)	76.9(6)		
C(8)	9086.0(13)	3918(4)	5824.6(16)	73.3(6)		
C(9)	8468.3(10)	4175(3)	6550.6(14)	56.9(4)		
C(10)	7684.6(8)	2924(2)	8166.7(11)	38.9(3)		
C(11)	7760.8(10)	4913(3)	8824.1(14)	55.6(4)		
O(1)	5124.2(8)	8930.3(15)	3159.3(8)	53.0(3)		
O(2)	6097.3(6)	2961.9(12)	4669.8(7)	39.1(2)		
O(3)	6725.7(7)	8692.8(13)	6736.4(8)	43.8(3)		
N(1)	5912.6(7)	8813.0(14)	4961.8(8)	31.7(2)		
N(2)	5601.2(7)	5926.2(14)	3920.0(8)	31.8(2)		
N(3)	6410.2(6)	5732.0(14)	5795.3(8)	30.7(2)		
N(4)	6803.0(6)	2726.1(15)	7522.6(8)	33.2(2)		
<i>R-a</i> -MBACY						
C(1)	3724(4)	4202(2)	-1064(2)	40.7(6)		
C(2)	3866(3)	6013(2)	-315.9(19)	36.6(5)		
C(3)	4784(3)	4576(2)	799.4(18)	34.1(5)		
C(4)	10643(3)	5285(2)	6207.8(18)	35.9(5)		
C(5)	10690(3)	3428(2)	5570(2)	38.7(6)		

Table S1. Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for *rac-α*-MBACY, *R-α*-MBACY and *S-α*-MBACY. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

C(6)	9230(4)	4711(2)	4483(2)	41.5(6)
C(7)	4503(4)	6380(2)	4484(2)	44.1(6)
C(8)	4843(6)	5492(3)	5129(3)	68.9(10)
C(9)	5197(6)	5604(4)	6244(3)	84.1(13)
C(10)	5174(4)	6601(4)	6709(2)	67.2(10)
C(11)	4806(5)	7477(3)	6086(3)	64.2(9)
C(12)	4473(5)	7370(3)	4979(3)	59.1(8)
C(13)	4156(4)	6248(3)	3275(2)	47.2(6)
C(14)	2748(5)	6967(5)	2737(3)	87.6(15)
C(15)	9294(4)	4071(3)	740(2)	51.8(7)
C(16)	9105(5)	3772(4)	-344(3)	71.9(10)
C(17)	8702(7)	4539(6)	-1137(4)	99.5(18)
C(18)	8457(6)	5570(5)	-881(4)	98.2(18)
C(19)	8619(6)	5888(4)	188(5)	91.3(15)
C(20)	9061(5)	5130(3)	1002(3)	66.6(9)
C(21)	9739(4)	3216(3)	1593(2)	48.0(6)
C(22)	11437(4)	3403(4)	2277(3)	75.6(11)
O(1)	3388(3)	3577.2(17)	-1825.0(16)	62.9(7)
O(2)	3671(3)	6974.2(15)	-541.8(16)	51.9(5)
O(3)	5324(2)	4184.2(16)	1682.6(13)	42.2(4)
O(4)	11046(3)	5964.3(15)	6909.5(14)	46.9(5)
O(5)	11259(3)	2521.2(16)	5787.7(16)	52.6(5)
O(6)	8353(3)	4999.5(17)	3628.1(15)	57.7(6)
N(1)	4460(3)	3878.7(17)	-76.3(17)	40.2(5)
N(2)	3374(3)	5267.4(17)	-1139.0(17)	41.1(5)
N(3)	4512(3)	5639.0(18)	653.7(16)	38.0(5)
N(4)	9703(3)	5505.8(17)	5249.1(16)	38.8(5)
N(5)	11084(3)	4229.0(17)	6342.6(17)	42.5(5)
N(6)	9710(3)	3689.9(19)	4653.8(17)	45.4(5)

N(7)	5763(3)	6443.9(18)	2761.6(16)	40.3(5)		
N(8)	8382(3)	3129.8(17)	2321.6(16)	35.1(4)		
S-α-MBACY						
C(1)	13723(3)	5797.5(17)	-1061.1(15)	41.1(4)		
C(2)	14784(2)	5419.1(17)	800.8(14)	34.7(4)		
C(3)	13868(2)	3984.7(16)	-318.8(14)	37.2(4)		
C(4)	10643(2)	4711.6(16)	6209.6(14)	35.8(4)		
C(5)	9233(3)	5285.4(18)	4481.2(15)	41.4(4)		
C(6)	10689(3)	6568.5(16)	5569.9(15)	39.0(4)		
C(7)	14503(3)	3618(2)	4485.0(16)	44.8(5)		
C(8)	14468(4)	2626(2)	4978(2)	59.4(6)		
C(9)	14808(4)	2521(3)	6087(2)	65.7(7)		
C(10)	15169(3)	3399(3)	6709.8(19)	68.3(8)		
C(11)	15197(5)	4389(3)	6245(2)	83.8(10)		
C(12)	14849(5)	4506(3)	5128(2)	69.6(7)		
C(13)	14156(3)	3750(2)	3273.6(16)	47.9(5)		
C(14)	12742(4)	3034(4)	2737(2)	88.8(12)		
C(15)	9298(3)	5930(2)	743.2(19)	52.3(5)		
C(16)	9058(4)	4866(3)	1000(3)	67.5(7)		
C(17)	8615(5)	4109(3)	183(4)	92.7(12)		
C(18)	8459(5)	4428(4)	-883(3)	99.2(15)		
C(19)	8710(5)	5468(5)	-1139(3)	99.0(15)		
C(20)	9106(4)	6227(3)	-343(2)	74.4(9)		
C(21)	9740(3)	6783(2)	1592.3(18)	48.3(5)		
C(22)	11441(3)	6595(3)	2278(3)	77.0(9)		
O(1)	13388(3)	6420.8(14)	-1824.9(13)	63.1(5)		
O(2)	15324.1(18)	5810.6(13)	1684.3(10)	42.8(3)		
O(3)	13668(2)	3021.2(12)	-542.1(12)	52.1(4)		
O(4)	11046(2)	4031.3(12)	6909.5(11)	47.6(4)		

O(5)	8353(2)	4996.0(15)	3627.8(12)	58.5(5)
O(6)	11258(2)	7476.6(13)	5787.2(12)	53.3(4)
N(1)	13376(2)	4729.7(14)	-1140.1(12)	41.4(4)
N(2)	14458(2)	6117.6(14)	-75.4(13)	40.1(4)
N(3)	14510(2)	4358.4(15)	653.3(12)	38.4(4)
N(4)	11084(2)	5766.8(14)	6343.3(13)	42.7(4)
N(5)	9702(2)	4489.4(14)	5246.1(12)	39.0(4)
N(6)	9713(2)	6306.2(15)	4651.5(14)	45.6(4)
N(7)	15765(2)	3551.7(15)	2760.8(12)	40.6(4)
N(8)	8382(2)	6867.5(14)	2321.0(12)	35.0(3)

Atom-Atom	Length/ Å	Atom-Atom	Length/ Å		
rac-a-MBACY					
C(4)-C(5)	1.387(2)	O(2)-C(2)	1.2436(15)		
C(4)-C(9)	1.389(2)	O(3)-C(3)	1.2339(14)		
C(4)-C(10)	1.5123(19)	N(1)-C(1)	1.3592(15)		
C(5)-C(6)	1.387(3)	N(1)-C(3)	1.3881(14)		
C(6)-C(7)	1.359(3)	N(2)-C(1)	1.3569(15)		
C(7)-C(8)	1.379(3)	N(2)-C(2)	1.3807(14)		
C(8)-C(9)	1.394(3)	N(3)-C(2)	1.3407(15)		
C(10)-C(11)	1.520(2)	N(3)-C(3)	1.3482(16)		
O(1)-C(1)	1.2216(15)	N(4)-C(10)	1.4978(16)		
<i>R-a</i> -MBACY					
C(7)-C(8)	1.372(5)	O(3)-C(3)	1.233(3)		
C(7)-C(12)	1.376(4)	O(4)-C(4)	1.229(3)		
C(7)-C(13)	1.509(4)	O(5)-C(5)	1.229(3)		
C(8)-C(9)	1.393(5)	O(6)-C(6)	1.251(3)		
C(10)-C(9)	1.367(7)	N(1)-C(1)	1.357(3)		
C(10)-C(11)	1.348(6)	N(1)-C(3)	1.393(3)		
C(11)-C(12)	1.380(4)	N(2)-C(1)	1.352(3)		
C(13)-C(14)	1.514(5)	N(2)-C(2)	1.402(3)		
C(15)-C(16)	1.393(5)	N(3)-C(2)	1.338(3)		
C(15)-C(20)	1.372(6)	N(3)-C(3)	1.345(3)		
C(15)-C(21)	1.514(4)	N(4)-C(4)	1.357(3)		
C(16)-C(17)	1.382(6)	N(4)-C(6)	1.392(3)		
C(17)-C(18)	1.338(9)	N(5)-C(4)	1.361(3)		
C(18)-C(19)	1.382(7)	N(5)-C(5)	1.394(3)		
C(19)-C(20)	1.397(5)	N(6)-C(5)	1.340(3)		
C(21)-C(22)	1.513(4)	N(6)-C(6)	1.333(4)		

Table S2. Selected bond lengths (Å) for *rac-\alpha-MBACY*, *R-\alpha-MBACY* and *S-\alpha-MBACY*.

O(1)-C(1)	1.230(3)	N(7)-C(13)	1.499(4)
O(2)-C(2)	1.231(3)	N(8)-C(21)	1.482(4)
	S - α -N	IBACY	
C(7)-C(8)	1.378(4)	O(3)-C(3)	1.234(3)
C(7)-C(12)	1.371(4)	O(4)-C(4)	1.229(2)
C(7)-C(13)	1.513(3)	O(5)-C(5)	1.251(2)
C(8)-C(9)	1.383(3)	O(6)-C(6)	1.231(3)
C(9)-C(10)	1.349(5)	N(1)-C(1)	1.354(3)
C(10)-C(11)	1.360(6)	N(1)-C(3)	1.400(2)
C(11)-C(12)	1.395(4)	N(2)-C(1)	1.355(2)
C(13)-C(14)	1.515(4)	N(2)-C(2)	1.395(2)
C(15)-C(16)	1.376(5)	N(3)-C(2)	1.343(3)
C(15)-C(20)	1.395(4)	N(3)-C(3)	1.340(2)
C(15)-C(21)	1.509(3)	N(4)-C(4)	1.360(3)
C(16)-C(17)	1.400(4)	N(4)-C(6)	1.395(3)
C(17)-C(18)	1.379(6)	N(5)-C(4)	1.362(2)
C(18)-C(19)	1.349(8)	N(5)-C(5)	1.392(2)
C(19)-C(20)	1.378(5)	N(6)-C(5)	1.331(3)
C(21)-C(22)	1.516(3)	N(6)-C(6)	1.341(2)
O(1)-C(1)	1.231(2)	N(7)-C(13)	1.500(3)
O(2)-C(2)	1.233(2)	N(8)-C(21)	1.483(3)

D-H···A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°		
rac-a-MBACY						
$N(1)-H(1)\cdots O(2)^2$	0.86	1.99	2.7988(13)	156		
N(2)- $H(2)$ ···O(1) ¹	0.86	1.98	2.8343(13)	176.3		
N(4)-H(4A)…N(3)	0.89	1.94	2.8254(14)	174.9		
$N(4)-H(4C)\cdots O(3)^{3}$	0.89	1.96	2.8266(14)	165.1		
	R-	α-MBACY				
$N(1)-H(1)\cdots O(2)^2$	0.86	2.04	2.840(3)	154.6		
N(4)- $H(4)$ ····O(5) ¹	0.86	2.06	2.875(3)	158.7		
$N(5)-H(5)\cdots O(1)^3$	0.86	2.01	2.859(3)	167.7		
N(7)-H(7A)…N(3)	0.89	2.02	2.875(3)	161.6		
N(7)-H(7B)····O(6)	0.89	1.95	2.827(3)	169.8		
N(8)-H(8A)····O(3)	0.89	2.14	2.766(3)	126.4		
N(8)-H(8B)····O(6)	0.89	1.95	2.836(3)	176.3		
$N(8)-H(8C)\cdots O(4)^4$	0.89	2.05	2.871(3)	153.1		
	S-e	α-MBACY				
$N(2)-H(2)\cdots O(3)^2$	0.86	2.04	2.840(2)	154.6		
$N(4)-H(4)\cdots O(1)^5$	0.86	2.01	2.859(2)	167.7		
N(5)- $H(5)$ ···O(6) ¹	0.86	2.05	2.871(2)	158.9		
N(7)-H(7A)…N(3)	0.89	2.02	2.876(2)	161.4		
$N(7)-H(7C)\cdots O(5)^{6}$	0.89	1.95	2.826(2)	169.9		
$N(8)-H(8A)\cdots O(2)^3$	0.89	2.16	2.766(2)	124.4		
$N(8)-H(8B)\cdots O(4)^4$	0.89	2.06	2.869(2)	151		
N(8)-H(8C)…O(5)	0.89	1.95	2.839(2)	174.1		

Table S3. Hydrogen bond lengths (Å) for *rac-α*-MBACY, *R-α*-MBACY and *S-α*-MBACY.

Symmetry transformations used to generate equivalent atoms:

rac-α-MBACY: ¹1-X,-1/2+Y,1/2-Z; ²+X,1+Y,+Z; ³+X,-1+Y,+Z

R-α-MBACY: ¹2-X,1/2+Y,1-Z; ²1-X,-1/2+Y,-Z; ³1+X, +Y,1+Z; ⁴2-X,-1/2+Y,1-Z

S-α-MBACY: ¹2-X,-1/2+Y,1-Z; ²3-X,1/2+Y,-Z; ³-1+X, +Y,+Z; ⁴2-X,1/2+Y,1-Z; ⁵+X, +Y,1+Z; ⁶1+X, +Y,+Z

Figure S1. The photographs of crystals for *rac*- α -MBACY (a), *R*- α -MBACY (b) and *S*- α -MBACY(c).

Figure S2. Simulated and experimental powder X-ray diffraction patterns of *rac-\alpha*-MBACY (a), *R-\alpha*-MBACY (b) and *S-\alpha*-MBACY(c).

Figure S3. A double hydrogen-bonded layer parallel to the *bc*-plane in *rac*- α -MBACY. The highlighted area in the figure corresponds the single hydrogen bonded layer as represented in Fig 1b.

Figure S4. The TGA curves of *rac-\alpha*-MBACY (a) and *R-\alpha*-MBACY (b) under N₂ atmosphere.

Figure S5. The IR spectra of *rac-\alpha*-MBACY (a), *R*- α -MBACY (b) and *S*- α -MBACY(c).

Figure S6. The SHG signals of *R*- α -MBACY (a) and *S*- α -MBACY (b) compared with KDP as the standard.

Figure S7. The electronic band structures of *rac-\alpha*-MBACY (a), *R-\alpha*-MBACY (b) and *S-\alpha*-MBACY (c).

Figure S8. Total and partial density of states for *rac-\alpha*-MBACY (a), *R-\alpha*-MBACY (b) and *S-\alpha*-MBACY(c).