A Cd-based complex as multifunctional fluorescent probe for the detection of

Fe³⁺, ceftriaxone sodium (CRO) and L-aspartic acid (L-Asp)

Jian-Fei Song,^a Jia-Li Chen,^a Gui-Quan Guo,^b Hong-Yan Zhu,^a Si-Ying Zhou,^a Xin-Rong Zheng, ^a Xiu-Qing Zhang^{*a}

Author information

Corresponding Author

Xiu-Qing Zhang* Email: glutchem@163.com

Orcid ID

Jian-Fei Song: https://orcid.org/0009-0005-3841-9899 Jia-Li Chen: https://orcid.org/0009-0003-3154-318X Gui-Quan Guo: https://orcid.org/0000-0003-0821-003X Hong-Yan Zhu: https://orcid.org/0009-0008-1390-6318 Si-Ying Zhou: https://orcid.org/0009-0003-0478-077X Xin-Rong Zheng: https://orcid.org/0009-0003-8099-7276 Xiu-Qing Zhang: https://orcid.org/0000-0002-2863-8140

a. Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, P. R. China.

b. School of Chemical Engineering and Biotechnology , Xingtai University , Xingtai 054001, P. R. China. †E-mail: glutchem@163.com (X.-Q. Zhang), telephone and fax numbers: +86-0773-2535678; Electronic Supplementary Information (ESI) available: CCDC 2404074.

Fig.S1 IR spectra of complex 1

Identification code	1		
Empirical formula	$C_{49}H_{34}Br_4Cd_2N_6O_{11}$		
Formula weight	1427.26		
Temperature/K	293(2)		
Crystal system	triclinic		
Space group	P^{1}		
a/Å	10.88120(10)		
b/Å	12.43520(10)		
c/Å	20.2017(2)		
a/° 96.6730(10)			
$eta / ^{\circ}$	94.8020(10)		
γ/°	90.3810(10)		
Volume/Å ³	2705.07(4)		
Ζ	2		
$ ho_{ m calc} g/ m cm^3$	1.752		
$\mu/{ m mm^{-1}}$	10.278		
F(000)	1388.0		
Reflections collected	38094		
Independent reflections	10970 [$R_{int} = 0.0710, R_{sigma} = 0.0613$]		
Data/restraints/parameters	10970/0/653		

Table S1. Crystal data and structure refinement for complex 1

Goodness-of-fit on F^2	1.072
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0592, wR_2 = 0.1706$
Final R indexes [all data]	$R_1 = 0.0635, wR_2 = 0.1758$

Bond Lengths (Å)					
Cd1—O1	2.308 (3)	Cd2—07	2.343 (4)		
Cd1—O2A	2.339 (3)	Cd2—O8B	2.369 (4)		
Cd1—O4	2.344 (4)	Cd2—O10	2.310 (4)		
Cd1—N1	2.296 (4)	Cd2—N6	2.281 (4)		
Cd1—N4	2.272 (4)				
Bond Angles (°)					
O1—Cd1—O2A	125.71 (13)	N4—Cd1—O5	97.16 (16)		
O1—Cd1—O4	147.06 (17)	N4—Cd1—N1	173.37 (15)		
O1—Cd1—O5	93.70 (15)	O7—Cd2—O8B	127.95 (13)		
O2A—Cd1—O4	87.21 (16)	O10—Cd2—O7	137.96 (13)		
O2A—Cd1—O5	140.06 (15)	O10—Cd2—O8B	93.95 (13)		
O4—Cd1—O5	53.86 (18)	N3C—Cd2—O7	88.69 (15)		
N1—Cd1—O1	87.81 (14)	N3C—Cd2—O8B	91.19 (15)		
N1—Cd1—O2A	86.96 (14)	N3C—Cd2—O10	87.01 (15)		
N1—Cd1—O4	95.97 (17)	N6—Cd2—O7	92.20 (15)		
N1—Cd1—O5	88.55 (17)	N6—Cd2—O8B	87.26 (16)		
N4—Cd1—O1	88.44 (14)	N6—Cd2—O10	93.17 (15)		
N4—Cd1—O2A	90.79 (14)	N6—Cd2—N3C	178.45 (16)		
N4—Cd1—O4	90.14 (17)				

Table S2 Selected Bond Lengths (Å) and Angles (°) for 1

Symmetry codes: (A) -x+2, -y+1, -z+1; (B) -x+1, -y+1, -z+2; (C) x-1, y, z+1; (D) x+1, y, z-1.

Table. S3 Main Hydrogen Bonds for 1

D-H	Acceptor	d(D-H)	d(H•••A)	d(D••••A)	∠D-H•••A
N2-H2	011	0.86	2.06	2.910(6)	170
О3-Н3	O2	0.82	1.84	2.531(6)	142
N5-H5	012	0.86	2.12	2.958(7)	163
O6-H6	05	0.82	1.98	2.635(101)	136
O9-H9A	07	0.82	1.87	2.577(7)	144
O12-H12	011	0.82	1.83	2.555(7)	146
C4-H4	05	0.93	2.57	3.491(8)	171
С15-Н15	07	0.93	2.56	3.208(7)	127
С22-Н22	O3	0.93	2.55	3.196(7)	127
C41-H41	Br3	0.93	2.75	3.632(6)	158
C49-H49	O10	0.93	2.49	3.400(7)	166

 Table S4. SHAPE analysis of Cd(II) ion in 1.

	CdO ₄ N ₂	CdO ₃ N ₂	
Coordination modes			
label	OC-6	TBPY-5	
symmetry	O _h	D _{3h}	
shape	Octahedron	Trigonal bipyramid	
Calculation results	$Distortion(\tau_{min})$		
	Cd1 (5.396)	Cd2 (1.702)	

Fig.S2 The TGA curves of complex 1

Fig.S3 PXRD spectra of complex 1 in different solvents

Fig.S4 PXRD spectra of 1 in solutions with different pH values

Fig.S5 (a) the fluorescence properties of complex 1. (b) CIE chromaticity coordinates of 1 and ligand

Ksv and LOD calculation methods

The quantitative fluorescent quenching efficiency of 1 (for analyte) using the Stern–Völmer (S–V) equation.¹

$$(I_0/I) = 1 + K_{SV} C - (1) ,$$

Where I is the fluorescence intensity at analyte concentration of C, and I_0 signifies the initial fluorescence intensity of complex 1. The quenching constant is indicated by K_{SV} (M⁻¹). A linear curve is obtained in a relatively definite range of analyte concentration. The equation

$$LOD = 3\sigma/Ksv \dots (2) ,$$

(where σ signifies the standard deviation of the initial fluorescence intensity of complex 1) was used to calculate the detection limit of analyte.

Fig.S6 (a, b) Fluorescence measurements of 1 in various pure solvents.

MOF-based fluorescent materials	Analyte	Quenching constant	Detection limits	Recycle	Ref
		(M ⁻¹)		ability	
[Cd ₂ (Hbsal) ₄ (dpa) ₂] _n	Fe ³⁺	7.5×10 ⁵	1.08 μM	yes	This work
[Cd ₂ (H ₂ O)(4-PDCA) ₂] _n	Fe ³⁺	2.72×10 ³	9.8 μM		2
[Tb ₂ (L) ₃]·2H ₂ O	Fe ³⁺	1.74×10 ⁴	0.51 μM	yes	3
Zn(C ₂₂ H ₁₂ N ₄ O ₄)·16H ₂ O	Fe ³⁺	1.61×10 ⁴	1.68 μM		4
[Cd ₂ (Hbsal) ₄ (dpa) ₂] _n	CRO	1.43×10 ⁶	0.64 μM	yes	This work
[Cd(IPA)(3dpu)] _n	CRO	2.49×10 ⁵	0.96 µM	yes	5
$[Cd(bbi)_2(H_2L)_2]_n$	CRO	3.51×10 ⁵	5.5 μM	yes	6
L-Cys-ZnS	CRO	1.57×10 ⁴	5 µM		7
[Cd ₂ (Hbsal) ₄ (dpa) ₂] _n	L-Asp	1.2×10 ⁵	6.25 μM	yes	This work
[Cd _{1.5} (NTB)(bipy) _{0.5}] _n	L-Asp	2.24×10 ⁶	2.68 μM	yes	8
[Zn(Aze)(bmbp)] _n	L-Asp	2.22×10 ⁵	5.33 μM		9
[Cd(Aze)(bmbp)] _n	L-Asp	2.88×10 ⁵	2.62 µM		9
Eu/Gd(TCPP)	L-Asp		18 µM		10

Tabe S5. Ksv and LOD of MOF-based luminescent sensors for Fe³⁺, CRO, L-Asp

Fig.S7 The cycling experiments of 1-Fe³⁺

Fig.S8 The cycling experiments of 1-CRO

Fig.S9 (a) The fluorescence spectrum of CRO solution added to **1** CH₃OH solution. (CRO was doped in normal human urine for experiment) (b) Emission spectra of **1** dispersed in CH₃OH solutions with increasing concentration of CRO. (CRO in Urine) (c) The Stern-Volmer plot for CRO. (CRO in Urine).

Fig.S10 The cycling experiments of 1-L-Asp

Fig.S11 PXRD spectra of 1-Fe³⁺, 1-CRO and 1-L-Asp after fluorescence quenching experiments.

Fig.S12 EDS spectrum of 1-Fe³⁺

Fig.S13 SEM images and elemental mapping images of 1-Fe³⁺

Table S6. The ICP results of complex 1-Fe³⁺ after luminescent recycles

Fig.S14 The XPS spectra of 1 before and after by treating with Fe³⁺, CRO and L-Asp, respectively (C 1s, N 1s, and O 1s).

 $\label{eq:Fig.S15} \textbf{(a) UV-V} is spectral profiles of different antibiotics recorded in H_2O solution and Ex of 1 in CH_3OH. (b) UV-V} is$

absorption spectra of 1 upon addition of different concentrations of CRO

Fig.S16 (a) UV-vis spectral profiles of different amino acids recorded in H₂O solution and Ex of 1 in CH₃OH. (b) UV-vis

absorption spectra of 1 upon addition of different concentrations of L-Asp

References

1. H.-F. Liu, T. Ye, X.-H. Qin, C. Chao, F.-P. Huang, X.-Q. Zhang and H.-D. Bian, CrystEngComm, 2022, 24, 1622-1629.

J.-H. Gao, P.-P. Huang, Z.-J. Zhang, F.-W. Tian, J. Ge, X.-Y. Cao, J. Liu, D. Wang, N. Zheng, J.-F. Lu, B. Liu, *Moßtruct.*, 2024, 1299, 137162.

- 3. C.-Y. Zhu, M.-T. Shen, H.-M. Cao, M.-J. Qi, P. Li, L. Chen, Y. Ge, W. Gao, X.-M. Zhang, *Microchem. J.*, 2023, 188, 108442.
- 4. R. Yang, X. Yu, B. Xu, W. Yao, V.-P. Fedin, A.-S. Potapov, E. Gao, *Polyhedron*, 2023, 243, 116535.
- 5. Q. Wen, J.-L. Chen, J.-F. Song, S.-Y. Zhou, H.-Y. Zhu, X.-Q. Zhang, J. Mol. Struct., 2024, 1300, 137235.
- 6. P. Xing, D. Wu, J. Chen, J. Song, C. Mao, Y. Gao, H. Niu, Analyst, 2019, 144, 2656-2661.
- 7. K. Wang, X. Gu, N. Deng, L. Li, Y. Ye, Y. Ma, J. Mol. Struct., 2025, 1321, 139975.
- 8. H. Yang, D. Qi, X. Si, Z. Yan, L. Guo, C. Shao, W. Zhang, L. Yang, J. Solid State Chem., 2022, 310, 123008.
- 9. F.-H. Zhao, Y.-S. Li, Z.-H. Zhao, R. Feng, Z.-L. Li, *Polyhedron*, 2024, 255, 116963.
- 10. X. Wen, C. Li, Z. Zhou, Y. He, J. He, X. Hou, Talanta, 2023, 265, 124778.