Supplementary Information (SI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2025

	a (Å)	b (Å)	<i>c</i> (Å)	α (°)	β(°)	γ (°)	RAD (%)
Experimental	9.639	7.471	7.754	90.000	95.690	90.000	0
COMPASS	9.513	7.195	7.850	90.000	96.600	90.000	1.2
COMPASS II	9.513	7.195	7.850	90.000	96.600	90.000	1.2
Universal	11.190	6.903	7.313	90.000	92.692	90.000	5.4
cvff	7.317	8.029	8.978	90.000	85.636	90.000	9.6
Dreiding	7.585	6.828	10.118	90.000	96.818	90.000	10.3

Table S1. Comparison between the lattice parameters of 3,3'-diaminobenzidine optimized by different force fields and the experimental values

Figure S1. Total energy and temperature changes in each double-layer model box during molecular dynamics simulation

Figure S2. PXRD pattern of samples after drying with saturated solution of 3,3'diaminobenzidine in binary mixed solvents (a)DMAc + water, (b)DMSO + water

1	,	
<i>T</i> (K)	$10^3 x^{exp}$	$10^3 x^{cal}$
	x _{DMAc} =0.1	
278.15	0.9420	0.9457
283.15	1.0307	1.0807
288.15	1.1722	1.2628
293.15	1.4011	1.5063
298.15	1.9602	1.8315
303.15	2.5504	2.2668
308.15	2.9479	2.8523
313.15	3.4893	3.6446
318.15	4.5507	4.7240
323.15	6.2296	6.2048
328.15	8.3013	8.2510
	x_{DMAc} =0.2	
278.15	3.2015	3.2782
283.15	4.1496	3.9720
288.15	4.3603	4.8210
293.15	5.9702	5.8604
298.15	7.5996	7.1333
303.15	8.8004	8.6923
308.15	10.59	10.6020
313.15	12.83	12.9412
318.15	14.59	15.8064
323.15	20.77	19.3155
328.15	23.17	23.6122

Table S2. Experimental and calculated molar solubility of 3,3'-diaminobenzidine at different temperatures in a binary mixture of DMAc and water

Continued Table S2						
<i>T</i> (K)	$10^3 x^{exp}$	$10^3 x^{cal}$				
	<i>x_{DMAc}</i> =0.3					
278.15	10.07	10.0821				
283.15	11.57	11.5956				
288.15	13.27	13.3640				
293.15	15.23	15.4305				
298.15	18.32	17.8460				
303.15	20.95	20.6697				
308.15	23.73	23.9708				
313.15	27.66	27.8306				
318.15	31.79	32.3435				
323.15	38.39	37.6201				
328.15	43.56	43.7893				
	x_{DMAc} =0.4					
278.15	23.42	23.1453				
283.15	25.05	25.0467				
288.15	26.37	27.3123				
293.15	30.07	29.9943				
298.15	34.27	33.1561				
303.15	37.12	36.8742				
308.15	40.70	41.2404				
313.15	45.38	46.3642				
318.15	52.41	52.3766				
323.15	60.80	59.4335				
328.15	67.07	67.7208				
	x_{DMAc} =0.5					
278.15	43.25	42.9975				
283.15	44.29	45.3147				
288.15	47.22	47.9790				

	Continued Table S2	
<i>T</i> (K)	$10^3 x^{exp}$	$10^3 x^{cal}$
293.15	51.52	51.0188
298.15	56.09	54.4672
303.15	59.25	58.3630
308.15	63.65	62.7508
313.15	66.49	67.6815
318.15	70.85	73.2130
323.15	79.33	79.4106
328.15	87.62	86.3483
	$x_{DMAc} = 0.6$	
278.15	65.36	64.8260
283.15	66.79	67.0865
288.15	68.40	69.7548
293.15	73.48	72.8479
298.15	76.77	76.3882
303.15	81.55	80.4036
308.15	84.13	84.9272
313.15	89.34	89.9977
318.15	96.27	95.6596
323.15	101.59	101.9636
328.15	109.14	108.9668

Continued Table S2

temperatures in a binary mixture of DMSO and water					
<i>T</i> (K)	$10^3 x^{exp}$	$10^3 x^{cal}$			
	$x_{DMSO} = 0.1$				
278.15	0.5035	0.5286			
283.15	0.5897	0.6060			
288.15	0.6680	0.7098			
293.15	0.8122	0.8478			
298.15	1.073	1.031			
303.15	1.421	1.276			
308.15	1.709	1.605			
313.15	1.964	2.047			
318.15	2.518	2.647			
323.15	3.479	3.467			
328.15	4.633	4.595			
	x_{DMSO} =0.2				
278.15	1.949	2.106			
283.15	2.453	2.495			
288.15	3.062	2.987			
293.15	3.664	3.609			
298.15	4.618	4.397			
303.15	5.461	5.401			
308.15	6.623	6.683			
313.15	8.171	8.324			
318.15	10.27	10.43			
323.15	13.36	13.15			
328.15	16.63	16.67			

Table S3. Experimental and calculated molar solubility of 3,3'-diaminobenzidine at different

Continued Table S3					
<i>T</i> (K)	$10^3 x^{exp}$	$10^3 x^{cal}$			
	$x_{DMSO} = 0.3$				
278.15	8.912	9.141			
283.15	10.23	10.53			
288.15	11.95	12.15			
293.15	14.35	14.04			
298.15	17.16	16.25			
303.15	19.27	18.83			
308.15	21.79	21.84			
313.15	23.92	25.35			
318.15	29.78	29.46			
323.15	34.32	34.25			
328.15	39.98	39.84			
	$x_{DMSO} = 0.4$				
278.15	31.39	31.42			
283.15	33.44	33.80			
288.15	36.81	36.51			
293.15	40.40	39.58			
298.15	42.52	43.05			
303.15	46.98	46.98			
308.15	50.46	51.41			
313.15	57.07	56.41			
318.15	62.56	62.05			
323.15	67.87	68.40			
328.15	75.68	75.56			
	$x_{DMSO} = 0.5$				
278.15	64.07	63.64			
283.15	65.79	66.66			
288.15	70.39	70.02			

Continued Table S3					
<i>T</i> (K)	$10^3 x^{exp}$	$10^3 x^{cal}$			
293.15	73.84	73.76			
298.15	77.95	77.91			
303.15	82.82	82.48			
308.15	86.98	87.51			
313.15	92.51	93.03			
318.15	100.0	99.09			
323.15	105.6	105.7			
328.15	112.8	113.0			

Figure S3. Intermolecular hydrogen bonds in crystals

Figure S4. Calculation results of interaction energy between molecular pairs of 3,3'-diaminobenzidine

Table S4. Intermolecular interaction energy of 3,3'-diaminobenzidine crystals

aalar	R^{a}	E_{ele}	E_{pol}	E_{dis}	E_{rep}	$E_{tot}{}^b$
color	(Å)	(kcal·mol ⁻¹)				
	10.7	-4.3	-1.4	-4.7	8.2	-4.5
	11.7	-3.6	-1.2	-4.9	6.2	-5.1
	6					
	5.38	-3.2	-1.4	-9.6	6.4	-8.5
	9.64	-1.8	-0.5	-3.2	1.4	-4.1

 R_a is the distance between molecular centroids.

Figure S5. PXRD (a) and FTIR (b) patterns of 3,3'-diaminobenzidine prepared in different solvents

		additive			
r.	E _{int}	E_S	E _{att} '	Relative	Area
гасе	(kcal·mol ⁻¹)	(kcal·mol ⁻¹)	(kcal·mol ⁻¹)	growth rate	(%)
(100)	-541.04	-12.58	-30.94	2.90	14.72
(011)	-527.35	-13.71	-35.23	3.30	
(11-1)	-960.35	-38.59	-10.68	1.00	85.28
(110)	-533.41	-18.67	-38.66	3.62	
(10-2)	-498.92	-23.10	-43.05	4.03	
(020)	-430.14	-8.44	-54.67	5.12	

Table S5. Crystal habit parameters of 3,3'-diaminobenzidine in the presence of