Supplementary Information

Predicting the Solid–Liquid Phase Diagram of a Ternary System with Cocrystal Formation

Sahar Nasrallah, Ahmad Alhadid *,† , and Mirjana Minceva *

Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, Maximus-von Imhof-Forum 2, Freising 85354, Germany *Corresponding authors e-mail: (A.Alhadid) ahmad.alhadid@tum.de; (M.Minceva) mirjana.minceva@tum.de

[†] Present address: College of Engineering and Technology, American University of the Middle East, Kuwait. (<u>ahmad.al-hadid@aum.edu.kw</u>)

UV spectrophotometry

The calibration curve for catechol in acetonitrile was established prior to concentration analysis. Catechol was weighed and transferred into a volumetric flask, followed by the addition of acetonitrile. The mixture was shaken until the catechol dissolved completely, and the flask was filled to the mark with additional acetonitrile. Two stock solutions were prepared with concentrations of 7.2641×10^{-5} g/g solution and 6.1571×10^{-5} g/g solution. Thirteen diluted samples were prepared in triplicate from these stock solutions to construct the calibration curve. The resulting curve showed excellent accuracy, described by the equation:

Absorbance = $0.0163 \times C_{catechol}$ (ppm) + 0.0953

with a correlation coefficient (R^2) of 0.9963.

Figure S1. Calibration curve for catechol in acetonitrile, measured by UV spectroscopy.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	T/K	$\sigma(T)/K$				
Catechol (2) + acetonitrile $(3)^*$								
-	0.2639	0.7361	277.1	0.8662				
-	0.3077	0.6923	284.7	0.5692				
-	0.3902	0.6098	303.7	0.1414				
-	0.4226	0.5774	313.3	0.3536				
-	0.5051	0.4949	327.6	0.1768				
-	0.5590	0.4410	333.6	0.7071				
ChCl (1):catechol (2) C11 in acetonitrile (3)**								
0.0803	0.0803	0.8394	294.0	0.3711				
0.1428	0.1428	0.7144	299.8	0.2646				
0.2111	0.2111	0.5778	311.0	0.1461				
0.2571	0.2571	0.4858	315.4	0.2646				
0.3219	0.3219	0.3562	321.3	0.3055				
ChCl (1):catechol (2) C12 in acetonitrile (3)**								
0.1169	0.2338	0.6493	289.8	0.1537				
0.1387	0.2773	0.58405	296.8	1.6949				
0.2226	0.4452	0.3322	308.2	0.5346				
0.2921	0.5841	0.12385	320.1	0.2812				
TMACl (1):catechol (2) C11 in acetonitrile (3)**								
0.0353	0.0353	0.9294	305.5	0.8485				
0.0379	0.0379	0.9242	307.1	0.6089				
0.0460	0.0460	0.9080	316.4	0.8372				
0.0494	0.0494	0.9012	320.2	0.9452				

Table S1. Measured solubility values using the variable-temperature method (n=3).

* n=2, ** n=3 (n is number of experiments).

Solid	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	Precipitate	$\sigma(x_2)$	$\sigma(x_1)$			
ChCl (1) + catechol (2) + acetonitrile (3)									
Catechol	0.0000	0.3641	0.6359	Catechol	0.0028	-			
C12+catechol (Invariant 1)	0.0711	0.4937	0.4351	C12+catechol	0.0016	0.0069			
C12+catechol	0.1038	0.4182	0.4780	C12	0.0011	0.0007			
C12+catechol	0.1065	0.3262	0.5673	C12	0.0088	0.0061			
C12	0.1549	0.2787	0.5664	C12	0.0009	0.0043			
C12+C11	0.1476	0.2534	0.5990	C12+C11	0.0061	0.0025			
C11	0.1393	0.1348	0.7259	C11	0.0020	0.0036			
C11+ChCl	0.0525	0.0558	0.7049	ChCl	0.0024	0.0051			
C11+ChCl (Invariant 2)	0.1338	0.1414	0.8917	C11+ChCl	0.0029	0.0024			
ChCl	0.0013	0.0000	0.9987	ChCl	-	3.36×10 ⁻⁵			
TMACl (1) + catechol (2) + acetonitrile (3)									
C12+catechol	0.1011	0.4904	0.4085	C12+catechol					
C12+catechol (Invariant 1)	0.078	0.31	0.612	C12	0.0003	0,0006			
C12	0.0712	0.2001	0.7287	C12	0.0072	0.0188			
C12+C11	0.0663	0.1847	0.7491	C12+C11	0.0032	0.0061			
C11	0.0513	0.0533	0.9148	C11	0.0011	0.0012			
C11+TMACl (Invariant 2)	0.0597	0.0528	0.9179	C11+TMACl	0.0020	0.0013			
TMACl	0.001896	0	0.9981	TMACl	-	9.79×10 ⁻⁵			

Table S2. Measured solubility values using the shake-flask method at 298.1 K*.

* n=3

Figure S2. Differential scanning calorimetry curve of cocrystals and pure components.

T/K

Figure S3. Differential scanning calorimetry curve of solid phase at equilibrium