Supporting Information

Electrochemically Engineered Hierarchical Flower-like Ag Nanostructures within Al_2O_3 Honeycomb Microchannel Periodic Arrays for Ultra-Sensitive SERS Detection

Penghui Wei¹, Jiajia Song¹, Haibin Tang², Qinglin Shi³, Yongqing Ma¹, Ganhong Zheng¹, Meiling Wang¹, Sajid Imran,⁴ Muhammad Usman Amin^{1,*}, Yilin Lu^{5,*}, Chuhong Zhu^{1,*}

¹School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China

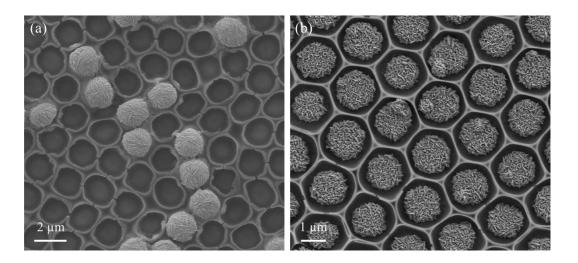
²Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid-State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China

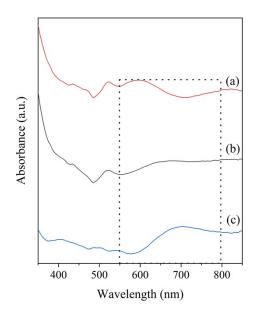
³ERA Piping (Anhui) Co., Ltd., Xuancheng 242299, People's Republic of China

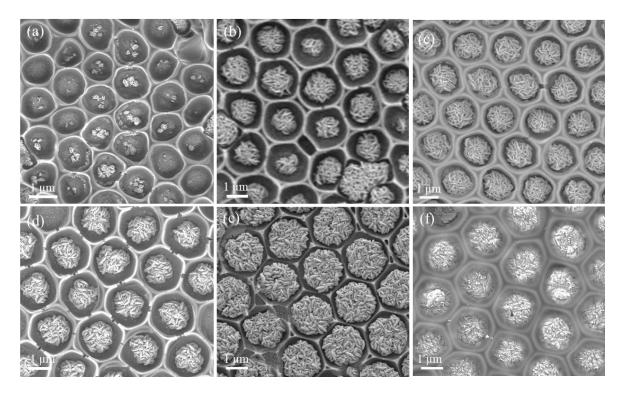
⁴School of science and engineering, The Chinese university of HongKong, Shenzhen 518172, China

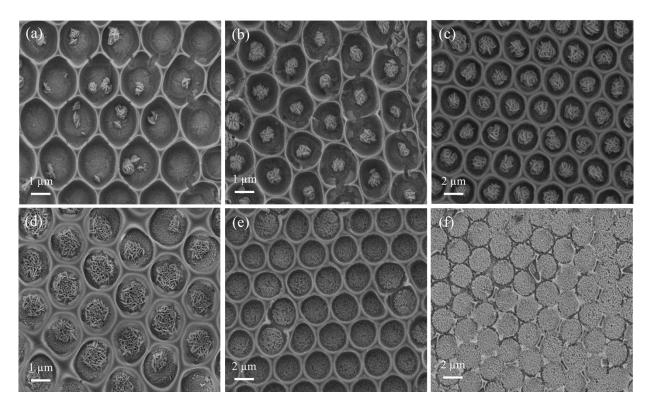
⁵Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

*Corresponding authors. E-mail addresses: usmanamin@ahu.edu.cn (M. U. Amin); chzhu@ahu.edu.cn (C. Zhu)






Fig. S1 SEM images of Ag nanostructures grown inside of Al_2O_3 HMPAs on ITO surface (a) without Au sputtering and (b) with Au sputtering.


Fig. S2 XPS spectra of flower-like Ag nanostructures synthesized within Al₂O₃ HMPAs: (a) Survey scan of as-prepared sample confirming the presence Ag and Al₂O₃, (b) high resolution XPS spectrum of indicating metallic Ag, (c) high resolution XPS spectrum corresponding to Al₂O₃, and (d) high resolution C1s spectrum showing adventitious carbon and oxidized species.

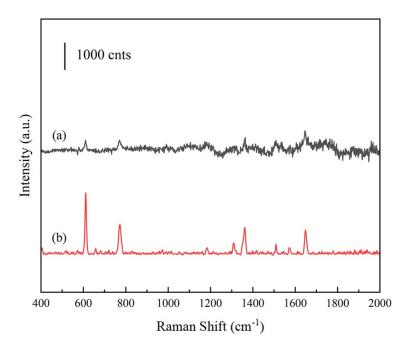

Fig. S3 UV-vis absorption spectra of Al₂O₃ HMPAs on ITO glass slide (a) before and (b) after electrodeposition of hierarchical flower-like Ag nanostructures, and (c) the difference of spectra before and after growing the hierarchical flower-like Ag nanostructures int the HMPAs that was obtained by directly subtracting the curve a from curve b.

Fig. S4 SEM images of Ag nanostructures grown inside the Al₂O₃ HPMAs under different concentrations of AgNO₃: (a) 1 mM, (b) 5 mM, (c) 10 mM, (d) 15 mM, (e) 20 mM, and (f) 30 mM.

Fig. S5 SEM images of Ag nanostructures grown inside the Al_2O_3 bowls by varying the current density from (a) 25 μ A/cm², (b) 50 μ A/cm², (c) 100 μ A/cm², (d) 150 μ A/cm², (e) 200 μ A/cm² and (f) 250 μ A/cm².

Fig. S6 The comparison between the Raman signal of R-6G (10^{-3} M) on a glass slide (spectrum a) and the SERS signal of R-6G (10^{-10} M) utilizing the hierarchical flower-like Ag nanostructures (spectrum b).

The SERS enhancement factor calculated for the fabricated hierarchical flower-like Ag nanostructures was 6.99×10^7 . The EF was determined using the standard equation:

$$EF = \frac{I_{SERS} \times C_{\theta}}{I_{\theta} \times C_{SERS}}$$

where C_0 and I_0 represents the concentration and intensity of the normal Raman signal, while C_{SERS} and I_{SERS} corresponds to the concentration and intensity for the SERS signal, respectively.

Table S1The comparison of present study of hierarchical flowerlike Ag nanostructures with previous studies reported in the literature.

Sample	Detected Analyte	Enhancement Factor/LOD	Value of R ²	Reference
Ag NPs	R-6G	6.7×10^6 Not reported	0.977	[1]
2D Cs ₂ AgBiBr ₆ nanoflakes	R-6G	1.37×10^{7} $1 \times 10^{-10} \text{ M}$	0.97	[2]
MoS ₂ nanobelts	R-6G	1.1×10^{4} $10^{-7} \mathrm{M}$	Not reported	[3]
WO ₃ -x nanoplatelets	R-6G	5.5×10^7 Not reported	Not reported	[4]
W ₁₈ O ₄₉ /monolayer MoS ₂	R-6G	3.45×10^{7} $1 \times 10^{-10} \mathrm{M}$	0.9915	[5]
Ag nanoflowers	R-6G	6.99×10^7 9.3×10^{-11} M	0.997	This work

References:

- S1. J. Du, K. Li, Y. Lu and P. Wang, J. Mater. Chem. C, 2025, DOI: 10.1039/d5tc00211g.
- S2. R. Chahal, S. Ghosal, J. Ghosh and P. K. Giri, *Nanoscale*, 2025, DOI: 10.1039/d5nr00437c.
- S3. C. Diao, C. Li, Y. Sun, X. Wang, M. Gao, X. Zhang, D. Li, Y. Li, G. Xu and J. Yu, *Mater. Today Nano*, 2025, **29**.
- S4. M. V. Simas, G. A. Davis, S. Hati, J. Pu, J. V. Goodpaster and R. Sardar, *ACS Appl. Mater. Interfaces*, 2025, **17**, 11309-11324.
- S5. M. Li, X. Fan, Y. Gao and T. Qiu, J. Phys. Chem. Lett., 2019, 10, 4038-4044.