A, B site doping strategy enhances $Sr_{0.9}Y_{0.1}Fe_{1-x}Ni_xO_{3-\delta}$ structural stability,

electrical and magnetic properties driven by Fe (IV) ions

Ruihang Yao, Hongyuan Song*, Haorong Wu, Xiaolong Yang, Kun Dong, Xingcan Chen, Zhenhua Ge, Liangwei Chen, Bin Liu, Lan Yu*

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China

* Corresponding Authors: songhongyuan0227@outlook.com (Hongyuan Song), yulan000@hotmail.com (Lan Yu)

Fig. S1 (a) XRD patterns of different sintering processes for SrFeO_{3- δ}. (b) Corresponding optical photographs.

Fig. S2 (a) XRD patterns of $SrFe_{1-x}Ni_xO_{3-\delta}$ (x = 0~0.3) polycrystals. (b) Corresponding optical photographs.

Fig. S3 (a) XRD patterns of SrFeO_{3- δ} and Sr_{0.9}Y_{0.1}FeO_{3- δ}. (b) Comparison of finished sintering and after sitting.

Fig. S4 The selected area electron diffraction (SAED) pattern of $Sr_{0.9}Y_{0.1}Fe_{0.9}Ni_{0.1}O_{3\text{-}\delta}$

Table S1 Crystal parameters of $Sr_{0.9}Y_{0.1}Fe_{1-x}Ni_xO_{3-\delta}$ (x = 0~0.3)

Sample	Phase structure	Space group	<i>a /</i> Å
x = 0	CP (97.5%) + T (2.5%)	$Pm^{\overline{3}}m + I4/mmm$	3.86518
<i>x</i> = 0.05	CD	₽ ⁻ 2	3.85615
x = 0.1	CP	$Pm^{3}m$	3.83091
x = 0.2	CP (98.9%) + NiO (1.1%)	$Pm\bar{3}m+Fm\bar{3}m$	3.85507
x = 0.3	CP (84.19%) + NiO (5.39%) + T (10.42%)	$Pm\bar{3}m+Fm\bar{3}m+I4/mmm$	3.85978

Sample	Phase structure	Atoms	Site	x	у	Ζ	Occ
<i>x</i> = 0	СР	Sr ₁	1b	0.5	0.5	0.5	0.9
		\mathbf{Y}_1	1b	0.5	0.5	0.5	0.1
		Fe ₁	1a	0	0	0	1
		O_1	3d	0.5	0	0	0.93
	T – SrFeO _{3-δ}	Sr ₁	8i	0.258	0	0	1
		Sr ₂	8j	0.2519	0	0.5	1
		Fe ₁	4e	0	0	0.2546	1
		Fe ₂	8f	0.25	0.25	0.25	1
		Fe ₃	4d	0.5	0	0.25	1
		O ₁	2b	0	0	0.5	1
		O ₂	16m	0.1201	0.1201	0.2227	1
		O ₃	8h	0.2398	0.2398	0.5	1
		O_4	16k	0.1238	0.6238	0.25	1
		O ₅	4c	0.5	0	0	1
	СР	Sr ₁	1b	0.5	0.5	0.5	0.9
<i>x</i> = 0.1		\mathbf{Y}_1	1b	0.5	0.5	0.5	0.1
		Fe ₁	1a	0	0	0	0.9
		Ni ₁	1a	0	0	0	0.1
		O1	3d	0.5	0	0	0.93
	СР	Sr ₁	1b	0.5	0.5	0.5	0.9
		\mathbf{Y}_1	1b	0.5	0.5	0.5	0.1
x = 0.3		Fe ₁	1a	0	0	0	0.7
		Ni ₁	1a	0	0	0	0.3
		O1	3d	0.5	0	0	0.93
	$T-Sr_3Fe_2O_7$	Sr_1	2b	0	0	0.5	1
		Sr ₂	4e	0	0	0.3171	1
		Fe ₁	4e	0	0	0.0979	1
		O_1	8g	0	0.5	0.0916	1
		O ₂	4e	0	0	0.195	1
		O ₃	2a	0	0	0	1

Table S2 Atomic parameters of the Rietveld refinement