IR spectroscopic characterization of 3d transition metal carbene cations, FeCH₂⁺ and CoCH₂⁺: Periodic Trends and A Challenge for DFT approaches

Frank J. Wensink,¹ Corry E. Smink,¹ P. B. Armentrout,² and Joost M. Bakker¹

 ¹Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
²University of Utah, Department of Chemistry, 315 South 1400 East, Salt Lake City, Utah 84112, United States

Supporting Information

Figure S1: Product mass distributions of the reaction between ethylene oxide and a) Fe⁺ ($\Delta M = m/z - 55.937$) and b) Co⁺ ($\Delta M = m/z - 58.935$). Some artifacts resulting from electrical noise pickup are denoted by an asterisk (*).

Figure S2: Observed ion intensities of $[M,C,2H]^+$ (black trace), MC⁺ (red) and M⁺ (green) normalized to their sum as a function of IR wavenumber for M = Fe (panel a) and Co (panel b). Bright versus light colors indicate measurements with different FEL settings. The signal increase in the Fe⁺ channel around 1100 cm⁻¹ is attributed to fragmentation of an unwanted [Fe,C,3H]⁺ reaction product that was not mass-ejected prior to irradiation.

Figure S3: Observed ion intensities of $[M,C,2H]^+$ (black trace), [MC,3H] (red), MC^+ (green) and M^+ (blue) during one single scan (panel a), and each channel normalized to the sum of all four (panel b); resulting IR fragmentation yield for $[Fe,C,2H]^+$ calculated using Fe^+ and FeC^+ as fragments.

Figure S4: Experimental IRMPD spectra of $[Fe,C,2H]^+$ (panel a) and $[Co,C,2H]^+$ (panel c). Comparison of the spectra calculated at the MP2(full)/def2-TZVPPD level (panel b) $FeCH_2^+$ (⁴B₁, black) and (⁴B₂, red) and (panel d) $CoCH_2^+$ (³A₁, black) and (³A₂, red).

Figure S5: Experimental IRMPD spectra of $[Fe,C,2H]^+$ (panel a) and $[Co,C,2H]^+$ (panel c). Comparison of the spectra calculated at the CCSD/def2-TZVPPD level with rovibrational simulations for (panel b) $FeCH_2^+$ (⁴B₁, black) and (⁴B₂, red) and (panel d) $CoCH_2^+$ (³A₁, black) and (³A₂, red).

Species	State	$E_{Rel} (eV)$	Occupation
$\mathrm{FeCH}_{2^{+}}$	${}^{4}\text{B}_{1}$	0.000	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^1(3a_1)^1(1b_2)^1$
	${}^{4}\text{B}_{2}$	0.013	$(1a_1)^2(1b_1)^2(2a_1)^1(1a_2)^2(3a_1)^1(1b_2)^1$
	$^{4}A_{2}$	0.179	$(1a_1)^2(1b_1)^2(2a_1)^1(1a_2)^1(3a_1)^1(1b_2)^2$
	${}^{4}B_{1}$	0.635	$(1a_1)^2(1b_1)^2(2a_1)^1(1a_2)^1(3a_1)^2(1b_2)^1$
	$^{4}A_{1}$	1.009	$(1a_1)^2(1b_1)^2(2a_1)^1(1a_2)^1(3a_1)^1(1b_2)^1(2b_1)^1$
	${}^{6}\mathrm{B}_{1}$	0.826	$(1a_1)^2(1b_1)^1(2a_1)^2(1a_2)^1(3a_1)^1(1b_2)^1(2b_1)^1$
	$^{2}A^{\prime\prime}$	1.038	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^1(3a_1)^1(1b_2)^1$
	$^{2}B_{1}$	1.052	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^1(3a_1)^1(1b_2)^1$
	${}^{2}A_{2}$	1.061	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^1(3a_1)^0(1b_2)^2$
	${}^{2}\mathbf{B}_{1}$	1.328	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^1(3a_1)^1(1b_2)^1$
	${}^{2}A_{2}$	1.419	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^1(3a_1)^0(1b_2)^2$
	${}^{2}A_{1}$	2.008	
	${}^{2}A_{1}$	2.367	
HFeCH ⁺	⁶ A ′′	3.323	
$(H_2)FeC^+$	$^{2}A'$	2.695	
	⁴ A''	3.595	
	⁶ A′	4.371	
HHFeC ⁺	⁴ A''	5.544	
CoCH ₂ ⁺	$^{3}A_{2}$	0.000	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^1(3a_1)^1(1b_2)^2$
	${}^{3}A_{1}$	0.050	$(1a_1)^2(1b_1)^2(2a_1)^1(1a_2)^2(3a_1)^1(1b_2)^2$
	${}^{3}B_{1}$	0.412	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^1(3a_1)^2(1b_2)^1$
	${}^{3}B_{2}$	0.898	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^2(3a_1)^1(1b_2)^1$
	${}^{3}A_{1}$	1.068	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^1(3a_1)^1(1b_2)^1(2b_1)^1$
	${}^{3}A_{1}$	1.906	
	${}^{1}A_{1}$	0.714	$(1a_1)^2(1b_1)^2(2a_1)^1(1a_2)^2(3a_1)^1(1b_2)^2$
	${}^{1}A_{2}$	0.771	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^1(3a_1)^1(1b_2)^2$
	${}^{1}A_{1}$	0.851	$(1a_1)^2(1b_1)^2(2a_1)^1(1a_2)^2(3a_1)^1(1b_2)^2$
	${}^{1}A_{1}$	1.711	$(1a_1)^2(1b_1)^2(2a_1)^2(1a_2)^2(3a_1)^0(1b_2)^2$
	${}^{1}A_{1}$	2.877	
	${}^{1}A_{1}$	3.005	
	⁵ A′	0.860	
	⁵ A''	0.943	
	${}^{5}\text{B}_{2}$	1.409	
$\mathrm{HCoCH^{+}}$	⁵ A′	3.258	
	$^{1}A'$	3.670	
$(H_2)CoC^+$	$^{1}A'$	3.086	
-	³ A′	3.414	
	${}^{5}B_{1}$	4.220	

Table S1: Ground and excited electronic states for $[M,C,2H]^+$ isomers with electronic occupation for selected states calculated at the B3LYP/def2-TZVPPD level. The 0 K relative energy E_{Rel} is given with respect to the lowest energy isomer for the metal involved.

MCH_{2}^{+}	State	Intensity (mode)/Intensity (CH ₂ wag) x 100		
		CH ₂ rock	M-C stretch	CH ₂ scissors
FeCH ₂ ⁺	${}^{4}\mathrm{B}_{1}$	35/42	5/41	1/1
RuCH_2^+	${}^{4}\mathrm{B}_{1}$	4/12	0/0.1	0/1
OsCH_{2}^{+}	${}^{4}\mathrm{B}_{1}$	5/18	0.4/0.3	1/0.1
$\mathrm{CoCH_2^+}$	$^{3}A_{2}$	41/41	0.05/25	3/23
$RhCH_2^{+a}$	$^{1}A_{1}$	0/1	24/30	8/22
$RhCH_2^{+a}$	$^{3}A_{2}$	9/6	23/23	6/2
IrCH_{2}^{+}	$^{3}A_{2}$	15/15	35/24	13/4

Table S2. Intensities of vibrational modes relative to those for the CH_2 wag (in %) calculated at the B3LYP/CCSD level. Notable differences are bolded.

^a CCSD values are from EOM-SF_CCSD calculations provided in Wensink, F. J.; Smink, C. E.; Steele, R. P.; Armentrout, P. B.; Bakker, J. M. *Phys. Chem. Chem. Phys.*, submitted for publication.