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1) Detail derivation of the spatial distribution of charge density in the vertical direction within the 
macroscopic limit 
For the spatial distribution of charge density in the vertical (z-) direction we take the following ansatz.

, (S1)
𝛿𝜌(𝑧) = 𝑞𝛿𝑛(𝑧 = 0)𝑒𝑥𝑝⁡( ‒

𝑞(𝑉(𝑧) ‒ 𝑉(𝑧 = 0))
𝑘𝐵𝑇

)

where , , and V(z) are the induced charge density, the carrier density, and the potential at height 𝛿𝜌(𝑧) = 𝑞𝛿𝑛(𝑧) 𝛿𝑛

z, respectively. q denotes the positive or negative elementary charge, corresponding to the induced hole or 

electron, respectively. We can easily see that the ansatz (S1) exactly compensates both diffusion and drift 

currents in the vertical direction, i.e., 

                                                .                                            (S2)
 ‒ 𝐷

∂
∂𝑧

𝛿𝜌(𝑧) ‒ 𝑞𝑘𝐵𝑇𝐷𝛿𝜌(𝑧)
∂

∂𝑧
𝑉(𝑧) = 0

We note that in eq. (S2) the Einstein relation between the diffusion coefficient  and the charge mobility 𝐷

 holds true. Thus, the ansatz (S1) is suitable for field-effect transistors (FETs), where the current 𝜇 = 𝑞𝑘𝐵𝑇𝐷

flows between the source and drain electrodes, i.e. only in the horizontal (x-) direction.

For the FETs, the most dominant divergences of the electric field are controlled by the gate voltage. Hence, 

the Gauss law for the induced charge density and the potential in the polymer layers can be restricted to the 

vertical direction, which provides

, (S3)
𝑑2𝑉(𝑧)

𝑑𝑧2
=‒

𝛿𝜌(𝑧)
𝜖𝑠

in which z and  are the height and the dielectric constant of the polymer layers.  Integrating the Gauss law 𝜖𝑠

(S3) step-by-step and utilizing the Ansatz (S1) we get

𝑑(𝑑𝑉(𝑧)
𝑑𝑧 ) =‒

𝛿𝜌(𝑧)
𝜖𝑠

𝑑𝑧

∴    (𝑑𝑉(𝑧)
𝑑𝑧 )𝑑(𝑑𝑉(𝑧)

𝑑𝑧 ) =‒
𝛿𝜌(𝑧)

𝜖𝑠
𝑑𝑉(𝑧)

∴    
∞

∫
𝑧

𝑑(𝑑𝑉(𝑧)
𝑑𝑧 )2 =  ‒

2𝑞𝛿𝑛(0)
𝜖𝑠

∞

∫
𝑧

exp ( ‒
𝑞(𝑉(𝑧) ‒ 𝑉(0))

𝑘𝐵𝑇 )𝑑𝑉(𝑧)

Assuming further that at the top layer of the FET  , while  we arrive at�𝑑𝑉(𝑧)
𝑑𝑧 ⌉𝑧→∞→0 �𝑞(𝑉(𝑧) ‒ 𝑉(0))

𝑘𝐵𝑇 |𝑧→∞→∞

∴    (𝑑𝑉(𝑧)
𝑑𝑧 )2 = 2𝛿𝑛(0)𝑘𝐵𝑇𝑒

‒ 𝑞(𝑉(𝑧) ‒ 𝑉(0))/𝑘𝐵𝑇)

∴  
𝑑𝑉(𝑧)

𝑑𝑧
= 2𝛿𝑛(0)𝑘𝐵𝑇/𝜖𝑠 𝑒

‒ 𝑞(𝑉(𝑧) ‒ 𝑉(0))/2𝑘𝐵𝑇

∴   
2𝛿𝑛(0)𝑘𝐵𝑇

𝜖𝑠

𝑧

∫
0

𝑑𝑧 =
𝑉(𝑧)

∫
𝑉(0)

𝑒
𝑞(

𝑉(𝑧) ‒ 𝑉(0)
2𝑘𝐵𝑇

)

𝑑𝑉(𝑧)

∴   𝑒
𝑞(𝑉(𝑧) ‒ 𝑉(0)/2𝑘𝐵𝑇

= ( 𝑞
2𝑘𝐵𝑇) 2𝛿𝑛(0)𝑘𝐵𝑇

𝜖𝑠
𝑧 + 1
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∴   𝑒

‒ 𝑞(𝑉(𝑧) ‒ 𝑉(0))
𝑘𝐵𝑇

= [( 𝑞
2𝑘𝐵𝑇) 2𝛿𝑛(0)𝑘𝐵𝑇

𝜖𝑠
𝑧 + 1] ‒ 2

 From eq. (S1), we obtain∴

                               (S4)
𝛿𝑛(𝑧) = 𝛿𝑛(𝑧 = 0)[( 𝑞

2𝑘𝐵𝑇) 2𝛿𝑛(𝑧 = 0)𝑘𝐵𝑇

𝜖𝑠
𝑧 + 1] ‒ 2

2) Capacity relation for the FET

Assuming further that the distribution of charge densities and the intensity of the electric field in the FET 

approaches that of the semi-infinite space, we get also from the Gauss law (S2)

                                                                       (S5)
�𝑑𝑉(𝑧)

𝑑𝑧 ⌉𝑧→∞ ‒ �𝑑𝑉(𝑧)
𝑑𝑧 ⌉𝑧 = 0 = 𝐸𝑧(𝑧→0 + ) =‒

1
𝜖𝑠

∞

∫
0

𝛿𝜌(𝑧)𝑑𝑧

The left-hand side of Eq. S5 is controlled by the vertical component of the electric field at the interface of the 

FET and the insulating dielectric, i.e., 

,                                                                                 (S6)
𝜖𝑠𝐸𝑧(𝑧→0 + ) = 𝜖𝐼𝐸𝑧(𝑧→0 ‒ ) = 𝜖𝐼

‒ (𝑉(𝑧 = 0) ‒ 𝑉𝐺𝑆)
𝑡𝑜𝑥

where we took into the account that the electric field inside the insulator of the thickness  is given by the 𝑡𝑜𝑥

potential slope between the FET and the gate voltage . Combining eqs. (S5) and (S6) we arrive at the 𝑉𝐺𝑆

“capacity relation”

 ,                                                                                                     (S7)

∞

∫
0

𝛿𝜌(𝑧)𝑑𝑧 =
𝜖𝐼

𝑡𝑜𝑥
(𝑉(𝑧 = 0) ‒ 𝑉𝐺𝑆)

which couples together the “surface charge” density (volume charge density integrated in the vertical 

direction) with the capacity of the insulator  and the gate voltage . Realizing that we know 

𝜖𝐼

𝑡𝑜𝑥 (𝑉(𝑧 = 0) ‒ 𝑉𝐺𝑆)

the spatial profile of  due to the eq. (S4), we can also perform the integration in (S7) analytically to get 𝛿𝜌(𝑧)

also the relation between the chare density at the bottom of the FET and the gate voltage as follows

                                                                                             (S8)
𝛿𝜌(𝑧 = 0) =

𝑞
2𝑘𝐵𝑇𝜖𝑠

(
𝜖𝐼

𝑡𝑜𝑥
(𝑉(𝑧 = 0) ‒ 𝑉𝐺𝑆))2

Alternatively, we can reformulate potential calibration with respect to the top of the FET structure and write

 ,                                                                                      (S9)
𝛿𝜌(𝑧 = 0) =

𝑞
2𝑘𝐵𝑇𝜖𝑠

(𝐶𝑝(𝑉(𝑧 = 𝑛𝐿𝑢𝑧) ‒ 𝑉𝐺𝑆))2

where  is the total capacitance, , where  and  are the capacitances of the polymer 𝐶𝑝 𝐶 ‒ 1
𝑃 = 𝐶 ‒ 1

𝑠 + 𝐶 ‒ 1
𝐼

𝐶𝑠 =
𝜖𝑠

𝑧𝐿
𝐶𝐼 =

𝜖𝐼

𝑡𝑜𝑥

and insulator layers per unit area, respectively.  and  are the thickness of the polymer and insulator, 𝑧𝐿 𝑡𝑜𝑥

respectively. We note that while the “surface charge” density scales linearly with the gate voltage in eq. (S7), 

the charge density at the bottom of the FET scales quadratically with the gate voltage in eq. (S8). Such property 

is related to the mean thickness  of the conducting channel of FET〈𝑍〉



 .                                                                                                       (S10)
〈𝑍〉 ≡

∞

∫
0

𝛿𝜌(𝑧)𝑑𝑧

𝛿𝜌(𝑧 = 0)
=

2𝑘𝐵𝑇

𝑞(𝑉(𝑧 = 0) ‒ 𝑉𝐺𝑆)
𝜖𝑠

𝜖𝐼
𝑡𝑜𝑥

We see that with increasing gate voltage the mean thickness  decreases. Namely, when the gate voltage 〈𝑍〉

difference  at the room temperature, the mean thickness  of the conducting 
(𝑉(𝑧 = 0) ‒ 𝑉𝐺𝑆) ≫

2𝑘𝐵𝑇

𝑞
≈ 0.05 𝑉

〈𝑍〉

channel becomes significantly thinner than the thickness of the insulating dielectrics . Hence, the applied 𝑡𝑜𝑥

gate voltage effectively decreases the thickness of the conducting channel, and therefore, we speak about the 

thin film FET model.

(3)  Eigensolution, matrix representation 

The spin-dependent total Hamiltonian  in the matrix form in the basis { } can be written as 𝐻𝜎 | �𝑚,𝜎⟩

                                        (S11)

[𝐻]𝜎 = [
𝑎11 𝑎12 0
𝑎12 𝑎22 𝑎23
0 𝑎23 𝑎33

⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑎𝑁 ‒ 2𝑁 ‒ 2 𝑎𝑁 ‒ 2𝑁 ‒ 1 0
𝑎𝑁 ‒ 2𝑁 ‒ 1 𝑎𝑁 ‒ 1𝑁 ‒ 1 𝑎𝑁 ‒ 1𝑁

0 𝑎𝑁 ‒ 1𝑁 𝑎𝑁𝑁

]𝑁 × 𝑁

The matrix element , where  is the potential 
𝑎𝑖𝑗 = (𝜖0 + 𝑈𝑛𝑖𝜎 +

1
2

𝜎(𝐽𝑠(⟨�̂� 𝑧
𝑖 ‒ 1⟩ + ⟨�̂� 𝑧

𝑖 + 1⟩)) + 𝑉(𝑘,𝑖))𝛿𝑖𝑗 + 𝑡𝑖𝑗 𝑉(𝑘,𝑖)

voltage on the i-th site of the k-th polymer layer, biased and driven by the drain-source and gate 
voltages, and  is the transfer integral from eq. (7). Note that  can be solved self-consistently 𝑡𝑖𝑗 𝑉(𝑘,𝑖)

from eqs. (2-5) in the main text. The matrix form (S11) can be obtained from the temperature-
dependent Hartree-Fock Hamiltonian

   
𝐻 HF

𝑘,𝑖𝜎𝑖;𝑘,𝑗𝜎𝑗 = 𝛿𝑘,𝜎𝑖;𝑘,𝜎𝑗
{𝛿𝑘,𝑖;𝑘,𝑗[(𝐻P)𝑘,𝑖;𝑘,𝑖 +

,                                         
 
𝑈
2〈�̂�𝑘,𝑖𝜎𝑖〉 +

𝜎𝑘,𝑖𝐽𝑠

2 (〈𝑆 𝑧
𝑘,𝑖 ‒ 1〉 +  〈𝑆 𝑧

𝑘,𝑖 + 1〉)] +  (𝛿𝑘,𝑖;𝑘,𝑗 + 1 + 𝛿𝑘,𝑖;𝑘,𝑗 ‒ 1)[(𝐻T)𝑘,𝑖;𝑘,𝑗 ‒ (1
4

𝐽𝑠)𝜌𝑘,𝑖𝜎𝑖;𝑘,𝑗𝜎𝑖
]}

(S12)

where the density matrix  satisfies
𝜌𝑘,𝑖𝜎𝑖;𝑘,𝑗𝜎𝑖

        (S13)
𝜌𝑘,𝑖𝜎𝑖;𝑘,𝑗𝜎𝑗

≡    ∑
𝑘,𝜎𝑘

⟨𝑘,𝑖𝜎𝑖│𝑘,𝜇𝜎𝜇⟩𝑓(𝐸𝑘,𝜇𝜎𝜇
)⟨𝑘,𝜇𝜎𝜇│𝑘,𝑗𝜎𝑗⟩→

 𝛿𝑘,𝜎𝑖;𝑘,𝜎𝑗
.𝜌𝑘,𝑖𝜎𝑖;𝑘,𝑗𝜎𝑖

Here,  is the Fermi-Dirac distribution of the eigenstates  (with the eigenenergies ) 
𝑓(𝐸𝑘,𝜇𝜎𝜇

) | �𝑘,𝜇𝜎𝜇⟩� 𝐸𝑘,𝜇𝜎𝜇

obtained as the solution to the Hartree-Fock (mean-field) Hamiltonian (S12), delocalized along the 
k-th chain. If we neglect in the Hartree-Fock Hamiltonian in eq. (S12) the off-diagonal coherences 

 for , which only “effectively” renormalize the “hopping term”, we obtain the “mean-
𝜌𝑘,𝑖𝜎𝑖;𝑘,𝑗𝜎𝑖 𝑖 ≠ 𝑗

field” Hamiltonian (S11).



 


