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Method:

Transmission electron microscopy (TEM) and high resolution TEM (HR-TEM) were recorded using a
FEI G2F30 electron microscope with a Gatan SC 200 CCD camera. To characterize the crystal structure
of the material, X-ray diffraction (XRD) patterns were recorded at a wavelength of Cu K (1.79) using a
Bruker AXS D8 Discover X-ray diffractometer. An AXIS ULTRA (Kratos Analytical Ltd.) was used to
evaluate the elemental composition of the samples via an Al mono K X-ray source (1486.6 eV). A
Steady State & Lifetime Fluorescence Spectrometer was used to obtain the excitation spectra. An
Edinburgh Instruments FLS920 spectrophotometer with an integrated nanowire was used to record the
fluorescence spectra. Temperature dependence and temperature-dependent reversibility data of the
material were obtained from the temperature-dependent experimental platform,!3 consisting of a laser, a
spectrometer, a fiber optic, a digital thermostat, an MX 100 data collector, and a platinum resistance
temperature sensor. The Agilent Cary 7000 Universal Spectrophotometer (UMS) was used to measure

the absorbance of a quantum dot solution.

Calculations of the precursors for the shell growth:

(1) NC Correlation & of CdSe NCs:
& =5857(D)**

where D is the the diameter of the NCs.

(2) The concentration of a dispersion containing NCs of quantum dots can be determined by UV/Vis
spectroscopy using the Beer—Lambert law:

A=g*xcx*]



where 4, ¢, ¢, and 1 are absorbance, molar absorbtivity (L mol cm™), NC concentration (mol L"), and

path length of the cuvette in which the sample is contained (cm), respectively.

(3) Lattice constant of Zinc blende ZnS: a=0.5406 nm.

The volume of ZnS molecular: V ,s=a%/4.

The average thickness of one monolayer of ZnS (d): d = \/5 /3%a’

(3) The amount of precursor required to grow a shell material with x monolayer thicknesses on the
surface of NCs can be calculated knowing the size and molar quantity of NCs and the lattice constant of
one monolayer of ZnS shell:

(3.1)The amount of Zn and S precursor for the 1 monolayer ZnS (1 ML ):

core core

VZHS(lML):%*ﬁ*((R +d)’-R’ )

The amount of ZnS moleculars (1ML) in one quantum dot: nyjyp= Vzus (IML)/Vzs

The amount of Zn/S precursor (IML):

Bzas(IML)= (n¢oreXN)Xnyp/N=ngxny; neye is the number of CdSe core particles calculated from the
quantum dot solution volume and NC concentration c. N is Avogadro's constant.

(3.2) The amount of Zn and S precursor for the x monolayer ZnS (x ML ):

Repeating the above calculation process, the amount of Zn/S precursor required for each layer of ZnS

shell can be obtained.

Figure S1 shows the particle size distribution of CdSe/ZnS quantum dots with different shell layers.
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Figure S1. The particle size distribution of CdSe/ZnS quantum dots with different shell layers. (a) OML.

(b) IML. (c) 4ML. (d) 7ML.

Figure S2 shows the fine XPS spectra of the CdSe/ZnS quantum dots.
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Figure S2. The fine XPS spectra of the CdSe/ZnS quantum dots.

Binding Energy (eV)




Figure S3 demonstrates the temperature-dependent characterization of the peak intensity versus

temperature for CdSe/ZnS quantum dot film probes with various shell thicknesses.
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Figure S3. Temperature response characteristics of CdSe/ZnS films. (a) PL peak intensity variation
during heating of the core CdSe film temperature probe. (b) PL peak intensity variation during heating
of the CdSe/ZnS (1ML) film temperature probe. (¢) PL peak intensity variation during heating of the
CdSe/ZnS (4ML) film temperature probe. (d) PL peak intensity variation during heating of the
CdSe/ZnS (7ML) film temperature probe.

Figure S4 illustrates the temperature-dependent characterization of the full width at half maxima

(FWHM) of CdS/ZnS quantum dot thin-film probes with different shell thicknesses.
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Figure S4. (a) Full width at half maxima variation during heating of the core CdSe film temperature

probe. (b) Full width at half maxima variation during heating of the CdSe/ZnS (IML) film temperature

probe. (¢) Full width at half maxima variation during heating of the CdSe/ZnS (4ML) film temperature

probe. (d) Full width at half maxima variation during heating of the CdSe/ZnS (7ML) film temperature

probe.

Table S1 shows the fitted expressions for the temperature-dependent curves of CdSe/ZnS films

possessing different shell thickness as well as the degree of linearity of the fit (R?).

Film Probes Temperature Range Fitting expressions Pearson’s R? (COD)
CdSe 20-70C ¥ =545.90152-0.21649x 0.99062
CdSe/ZnS (IML) 20-75C y=1570.72034 + 0.23381x 0.99529
CdSe/ZnS (4ML) 20-80°C ¥ =564.73052+0.11633x 0.99465
CdSe/ZnS (7TML) 20-100°C ¥ =561.38497+0.08513x 0.94612

Table S2. Comparison of the temperature sensing characteristics of the CdSe/ZnS based temperature

probe with other similar nanothermometers.

Material

Temperature Range

Reversibility

R? Ref.




Mn4+/Er3+ co-activated

double perovskite 03523 K : 0951 ]
PbS@CdS@CdS GQD 10-40 °C / 0.97 [2]
CdSe/ZnS@PCF -10-120 °C 3 0.99 [3]
CdTe/ZnS 20-60 °C / 0.955 [4]
CdSe 225-375K / 0.995 [5]
Graphene QDs 10-80°C 3 0.99 [6]
NaYF,: Yb**/Er¥* 20-60 °C 5 0.997 [7]
CdSe/ZnS film (4ML) 20-80 °C 5 0.995 this work*

Figure S5 illustrates the changes in peak fluorescence wavelengths of four different CdSe/ZnS quantum

dot membranes during heating and cooling cycles (the photoluminescence curves have been normalized

during heating and cooling).
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Figure S5. Four different CdSe/ZnS quantum dot membranes during heating and cooling cycles (a) 0

ML. (b) 1 ML, (c) 4 ML, (d) 7 ML.



Figure S6 demonstrates the X-ray photoelectron spectra of CdSe cores and CdSe/ZnS core-shell
QD/POSS-based films with different ZnS monolayers after 10 heating and cooling cycles, which did not

change significantly compared to the unheated quantum dot film.
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Figure S6. X-ray photoelectron spectra of CdSe cores and CdSe/ZnS core-shell QD/POSS-based films

with varying ZnS monolayers.
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