# ESI: Real-time dynamics of vibrational and vibronic wavepackets within Rydberg and ion-pair states of molecular iodine

Jean-Michel Mestdagh<sup>a</sup>, Lou Barreau<sup>b</sup> and Lionel Poisson<sup>\*b</sup>

## S1 Detailed fit of the photoelectron spectra

Here are presented the fits that feed the Table 1 of the paper. The bands fitted are presented in Figure 8 of the main text. Here the same colours are used for consistency. The fit model used provides three time constants:

- τ<sup>-</sup>: a decay toward the negative times
- $\tau_A$ : a decay toward the positive times
- $\tau_B$ : a decay toward the positive times

#### S1.1 Analytic equation model

The fit procedure uses the following analytic functions. Assuming an instrumental response function with the gaussian shape:

$$\operatorname{IRF}(t) = \frac{1}{\pi\sigma} e^{-\left(\frac{t}{\sigma}\right)^2} \tag{1}$$

where  $\sigma$  defines the experimental width, then the expressions of the convolution of the product of a step function times an exponential decay, with the gaussian function above writes:

$$\operatorname{declf}(t,\tau,\sigma) = \frac{1}{2} e^{-\left(\frac{t}{\tau} - \left(\frac{\sigma}{2\tau}\right)^2\right)} \operatorname{erfc}\left(-\frac{t - \frac{\sigma^2}{2\tau}}{\sigma}\right)$$
(2)

where erfc is the complementary error function. The fitting equations used are then:

$$Neg(t) = declf(-t, \tau^{-}, \sigma)$$
 (3)

$$A(t) = \operatorname{declf}(t, \tau_A, \sigma) \tag{4}$$

$$B(t) = \frac{\tau_B}{\tau_B - \tau_A} (\operatorname{declf}(t, \tau_B, \sigma) - \operatorname{declf}(t, \tau_A, \sigma))$$
(5)

$$C(t) = \frac{1}{2}\operatorname{erfc}(-\frac{t}{\sigma}) - A(t) - B(t)$$
(6)

#### S1.2 Fit of the experimental data

To improve the fit, both  $S_0^{elec}(E,t)$  (top figure for each band) and  $S_2^{elec}(E,t)$  (bottom figure for each band) where fitted together with the same time constants.



Fig. S1 Evolution of the continua Bkg1 and Bkg2, spectrally modelled as exponential decays in main text Fig. 8, and their fit. The corresponding energy constants are reported on each graph. For each figure, the top one reports for the total signal, and the bottom one is the anisotropical component of the signal issued from the pBASEX<sup>1</sup> inversion. Both declays are fitted together.



Fig. S2 Evolution of the Neg band modelling signal at negative time delays and its fit.

<sup>&</sup>lt;sup>a</sup>Université Paris-Saclay, CEA, CNRS, Laboratoire Interactions Dynamiques et Lasers, 91191 Gif-sur-Yvette, France.

<sup>&</sup>lt;sup>b</sup>Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France.

<sup>\*</sup> E-mail:lionel.poisson@universite-paris-saclay.fr





Fig. S3 Evolution of the three decaying bands Dec1, Dec2 and Dec3 and their fit.



2



Fig. S5 Evolution of the three low energy rising bands LE1, LE2 and LE3 and their fit.

# S2 Complementary data



Fig. S6 Similar to Fig. 5 - top panel, with another colour map to enhance the feature shifting in KER.



Fig. S7 269/807 nm experiment top panel: 3D-plot of the fs-TRKERS signal  $S_2^{cation}(KER, \tau)$  up to 40 ps time delay. Bottom panel: zoom on the first 2 ps with a different intensity scale. Colour map is provided on the right.

S3 Energetics of the dissociation channels

|                                                              | Excess energy |            |  |  |
|--------------------------------------------------------------|---------------|------------|--|--|
| Dissociation or                                              | 266/334 nm    | 269/807 nm |  |  |
| ionization as                                                | (eV)          | (eV)       |  |  |
| $2 \times \text{pump} + 2 \times \text{probe photons}$       |               |            |  |  |
| $I^+({}^1S_0) + I^-({}^1S_0)$                                | 4.15          | -0.31      |  |  |
| $I^+({}^1D_2) + I^-({}^1S_0)$                                | 6.11          | 1.64       |  |  |
| $I^+({}^3P_1) + I^-({}^1S_0)$                                | 6.93          | 2.47       |  |  |
| $I^+({}^3P_0) + I^-({}^1S_0)$                                | 7.01          | 2.55       |  |  |
| $I^+({}^3P_2) + I^-({}^1S_0)$                                | 7.81          | 3.35       |  |  |
| $I^{+}({}^{3}P_{2}) + I({}^{2}P_{\frac{1}{2}}) + e^{-}$      | 3.81          | -0.66      |  |  |
| $I^{+}({}^{3}P_{1}) + I({}^{2}P_{\frac{3}{2}}) + e^{-}$      | 3.87          | -0.59      |  |  |
| $I^{+}({}^{3}P_{0}) + I({}^{2}P_{\frac{3}{2}}) + e^{-}$      | 3.95          | -0.51      |  |  |
| $I^+({}^3P_2) + I({}^2P_{\frac{3}{2}}) + e^-$                | 4.75          | 0.29       |  |  |
| $I_2^+ (A^2 \Pi_{\frac{1}{2}u})^2 + e^-$                     | 4.95          | 0.48       |  |  |
| $I_2^+(A^2\Pi_{\frac{3}{2}u}^2)+e^-$                         | 6.05          | 1.59       |  |  |
| $I_2^+(X^2\Pi_{\frac{1}{2}g})+e^-$                           | 6.81          | 2.34       |  |  |
| $I_2^+(X^2\Pi_{\frac{3}{2}g})+e^-$                           | 7.45          | 2.99       |  |  |
| $2 \times \text{pump} + 1 \times \text{probe photons}$       |               |            |  |  |
| $I^+({}^1S_0) + I^-({}^1S_0)$                                | 0.44          | -1.85      |  |  |
| $I^+({}^1D_2) + I^-({}^1S_0)$                                | 2.39          | 0.11       |  |  |
| $I^+({}^{3}P_1) + I^-({}^{1}S_0)$                            | 3.22          | 0.93       |  |  |
| $I^+({}^{3}P_0) + I^-({}^{1}S_0)$                            | 3.30          | 1.01       |  |  |
| $I^+({}^{3}P_2) + I^-({}^{1}S_0)$                            | 4.09          | 1.81       |  |  |
| $I^{+}({}^{3}P_{2}) + I({}^{2}P_{\frac{1}{2}}) + e^{-}$      | 0.09          | -2.19      |  |  |
| $I^{+}({}^{3}P_{1}) + I({}^{2}P_{\frac{3}{2}}) + e^{-}$      | 0.16          | -2.13      |  |  |
| $I^{+}({}^{3}P_{0}) + I({}^{2}P_{\frac{3}{2}}) + e^{-}$      | 0.24          | -2.05      |  |  |
| $I^{+}({}^{3}P_{2}) + I({}^{2}P_{\frac{3}{2}}) + e^{-}$      | 1.04          | -1.25      |  |  |
| $I_2^+(A^2\Pi_{\frac{1}{2}u}) + e^-$                         | 1.23          | -1.05      |  |  |
| $I_2^+(A^2\Pi_{\frac{3}{2}u}) + e^-$                         | 2.33          | 0.05       |  |  |
| $I_2^+(X^2\Pi_{\frac{1}{2}g}) + e^-$                         | 3.09          | 0.80       |  |  |
| $I_2^+(X^2\Pi_{\frac{3}{2}g}^2) + e^-$                       | 3.74          | 1.45       |  |  |
| $2 \times$ pump photons                                      |               |            |  |  |
| $I^+({}^{3}P_2) + I^-({}^{1}S_0)$                            | 0.38          | 0.27       |  |  |
| $I^+({}^{3}P_0) + I^-({}^{1}S_0)$                            | -0.42         | -0.53      |  |  |
| $I^{+}({}^{3}P_{1}) + I^{-}({}^{1}S_{0})$                    | -0.50         | -0.61      |  |  |
| $I_2^+(X^2\Pi_{\frac{3}{2}g}) + e^-$                         | 0.02          | -0.09      |  |  |
| $I({}^{2}P_{3/2}) + I^{*}(({}^{3}P_{2})6s^{2}[2]_{5/2})$     | 0.99          | 0.89       |  |  |
| $I({}^{2}P_{3/2}) + I^{\star}(({}^{3}P_{2})6s^{2}[2]_{3/2})$ | 0.81          | 0.71       |  |  |
| $I({}^{2}P_{3/2}) + I^{*}(({}^{3}P_{0})6s^{2}[0]_{1/2})$     | 0.22          | 0.11       |  |  |
| $I({}^{2}P_{3/2}) + I^{*}(({}^{3}P_{1})6s^{2}[1]_{3/2})$     | 0.10          | 0.002      |  |  |

Table S1 Excess energy to be shared between fragments when ground state  $I_2$  molecules absorb pump and probe photons as indicated in the table. A limited version of this table is present in the main text (Tab. 2).

# S4 Spectroscopic constants

|                                                                                                 | T <sub>e</sub> |       | De                 |       | R <sub>e</sub> | $\omega_e$         |                         |  |
|-------------------------------------------------------------------------------------------------|----------------|-------|--------------------|-------|----------------|--------------------|-------------------------|--|
| $I_2$ state $\rightarrow$ valence asymptote                                                     | $cm^{-1}$      | eV    | $\mathrm{cm}^{-1}$ | eV    | Å              | $\mathrm{cm}^{-1}$ | Ref.                    |  |
| $X: 0_g^{+1} \Sigma_{0_g^{+}} \to I({}^2P_{\frac{3}{2}}) + I({}^2P_{\frac{3}{2}})$              | 0.0            | 0.000 | 12547              | 1.556 | 2.666          | 214.52             | 2,3 (Exp.)              |  |
| $A': 2u^{3}\Pi_{u} \to I({}^{2}P_{\frac{3}{2}}) + I({}^{2}P_{\frac{3}{2}})$                     | 10041.7        | 1.245 | 2506               | 0.311 | 3.080          | 108.81             | 4 (Exp.)                |  |
| $A: 1u^{3}\Pi_{u} \to I({}^{2}P_{\frac{3}{2}}) + I({}^{2}P_{\frac{3}{2}})$                      | 10912.7        | 1.353 | 1640               | 0.203 | 3.129          | 88.30              | 5 (Exp.)                |  |
| $B': 0_u^{-3}\Pi_u \to I({}^2P_{\frac{3}{2}}) + I({}^2P_{\frac{3}{2}})$                         | 12259.5        | 1.520 | 288                | 0.036 | 4.097          | 19.41              | 6 (Exp.)                |  |
| $a: 1g^{3}\Pi_{g} \to I({}^{2}P_{\frac{3}{2}}) + I({}^{2}P_{\frac{3}{2}})$                      | 12141.2        | 1.505 | 406                | 0.050 | 4.311          | 23.62              | 7 (Exp.)                |  |
| B": $1u^{1}\Pi_{u} \rightarrow I({}^{2}\dot{P}_{\frac{3}{2}}) + I({}^{2}\dot{P}_{\frac{3}{2}})$ | 12372.5        | 1.534 | 177                | 0.022 | 4.200          | 19.80              | Ref.12 (Exp.) de Ref. 8 |  |
| $2g^{3}\Pi_{g} \to I({}^{2}P_{\frac{3}{2}}) + I({}^{2}P_{\frac{3}{2}})^{2}$                     | 12309.0        | 1.526 | 238                | 0.030 | 4.340          | 20.00              | 9 (Exp.)                |  |
| $3u^{3}\Delta_{u} \rightarrow I({}^{2}P_{\frac{3}{2}}) + I({}^{2}P_{\frac{3}{2}})$              | 12445.1        | 1.543 | 105                | 0.013 | 4.756          | 13.90              | 8 (Th.)                 |  |
| $a': (2)0_g^+ \to I(^2P_{\frac{3}{2}}) + I(^2P_{\frac{3}{2}})$                                  | 12303.4        | 1.525 | 244                | 0.030 | 4.641          | 17.69              | 7 (Exp.)                |  |
| $(2) 0_u^- \to I({}^2P_{\frac{3}{2}})^2 + I({}^2P_{\frac{3}{2}})^2$                             | 12501.6        | 1.550 | 48                 | 0.006 | 4.803          | 10.90              | 8 (Th.)                 |  |
| $B: 0^{+3}_{u}\Pi_{0^{+}_{u}} \to I({}^{2}P_{\frac{3}{2}}) + I({}^{2}P_{\frac{1}{2}})$          | 15769.0        | 1.955 | 4381               | 0.543 | 3.024          | 125.67             | 2 (Exp.)                |  |
| $(3)0_g^+ \rightarrow I({}^2P_{\frac{3}{2}}) + I({}^2P_{\frac{1}{2}})^2$                        | 19295.0        | 2.392 | 855                | 0.106 | 3.665          | 64.78              | 10 (Exp.)               |  |
| $1g^{1}\Pi_{g} \rightarrow I({}^{2}P_{\frac{3}{2}}) + I({}^{2}P_{\frac{1}{2}})$                 | 19685.0        | 2.441 | 465                | 0.058 | 4.050          | 29.60              | 11 (Exp.)               |  |
| $0_g^{-3}\Pi_g \to I({}^2P_{\frac{3}{2}}) + I({}^2P_{\frac{1}{2}})$                             | 19905.8        | 2.468 | 468                | 0.058 | 3.851          | 32.70              | 8 (Th.)                 |  |
| $b': 2u^{3}\Delta_{u} \to I({}^{2}P_{\frac{3}{2}}) + I({}^{2}P_{\frac{1}{2}})$                  | 19827.0        | 2.458 | 322                | 0.040 | 4.245          | 25.60              | 12 (Exp.)               |  |
| $1g^{3}\Sigma_{g}^{-} \rightarrow I(^{2}P_{\frac{3}{2}})^{2} + I(^{2}P_{\frac{1}{2}})^{2}$      | 20123.5        | 2.495 | 258                | 0.032 | 4.273          | 22.10              | 8 (Th.)                 |  |
| $(3)0_{u}^{-} \to I({}^{2}P_{\frac{3}{2}}) + I({}^{2}P_{\frac{1}{2}})$                          | 19967.0        | 2.476 | 184                | 0.023 | 4.460          | 18.20              | 9 (Exp.)                |  |
| $C: 1u^{3}\Sigma_{u}^{+} \to I(^{2}P_{\frac{3}{2}}) + I(^{2}P_{\frac{1}{2}})$                   | 19913.0        | 2.469 | 237                | 0.029 | 4.355          | 22.29              | 12 (Exp.)               |  |
| $2g^{1}\Delta_{g} \rightarrow I(^{2}P_{\frac{3}{2}})^{2} + I(^{2}P_{\frac{1}{2}})^{2}$          | 19938.0        | 2.472 | 213                | 0.026 | 4.410          | 20.10              | 9 (Exp.)                |  |
| $1u^{3}\Sigma_{u}^{+} \rightarrow I({}^{2}P_{\frac{3}{2}}^{2}) + I({}^{2}P_{\frac{1}{2}}^{2})$  | 20309.0        | 2.518 | 65                 | 0.008 | 4.673          | 12.60              | 8 (Th.)                 |  |
| $0_{g}^{+1}\Sigma_{g}^{+} \to I({}^{2}P_{\frac{1}{2}}^{2}) + I({}^{2}P_{\frac{1}{2}}^{2})$      | 27761.6        | 3.442 | 436                | 0.054 | 3.928          | 33.80              | 8 (Th.)                 |  |
| $(4) 0_u^- \to I({}^2P_{\frac{1}{2}}) + I({}^2P_{\frac{1}{2}})$                                 | 27273.0        | 3.381 | 480                | 0.060 | 3.923          | 34.90              | 12 (Exp.)               |  |
| $1u^{3}\Delta_{u} \rightarrow I(^{2}P_{\frac{1}{2}}^{2}) + I(^{2}P_{\frac{1}{2}}^{2})$          | 27373.9        | 3.394 | 379                | 0.047 | 4.036          | 29.24              | 13 (Exp.)               |  |

 $\text{Table S2 Spectroscopic constants of the } I_2 \text{ states which correlate to the } I({}^2P_{\frac{3}{2}}) + I({}^2P_{\frac{1}{2}}) + I({}^2P_{\frac{3}{2}}) \text{ and } I({}^2P_{\frac{1}{2}}) + I({}^2P_{\frac{1}{2}}) + I({}^2P_{\frac{1}{2}}) \text{ asymptotes.}$ 

|                                                            | T <sub>e</sub>   |       | $D_e$         |       | R <sub>e</sub> | ω <sub>e</sub>     |              |
|------------------------------------------------------------|------------------|-------|---------------|-------|----------------|--------------------|--------------|
| $I_2$ state $\rightarrow$ ion-pair asymptote               | cm <sup>-1</sup> | eV    | $\rm cm^{-1}$ | eV    | Å              | $\mathrm{cm}^{-1}$ | Ref.         |
|                                                            |                  |       |               |       |                |                    | •            |
| $D': 2_g \to I^+({}^3P_2) + I^-({}^1S_0)$                  | 40388.3          | 5.008 | 31781         | 3.940 | 3.600          | 103.95             | 14,15 (Exp.) |
| $\beta: 1_g \to I^+({}^3P_2) + I^-({}^1S_0)$               | 40821.0          | 5.061 | 31349         | 3.887 | 3.607          | 105.02             | 16 (Exp.)    |
| $D: 0^{+}_{u} \to I^{+}({}^{3}P_{2}) + I^{-}({}^{1}S_{0})$ | 41026.3          | 5.087 | 31143         | 3.861 | 3.581          | 95.08              | 17 (Exp.)    |
| $E: 0_{g}^{+} \to I^{+}({}^{3}P_{2}) + I^{-}({}^{1}S_{0})$ | 41410.3          | 5.134 | 30759         | 3.814 | 3.634          | 101.41             | 18 (Exp.)    |
| $\gamma: 1_u^{\circ} \to I^+({}^3P_2) + I^-({}^1S_0)$      | 41621.3          | 5.160 | 30548         | 3.788 | 3.672          | 95.01              | 18 (Exp.)    |
| $\delta: 2_u \to I^+({}^3P_2) + I^-({}^1S_0)$              | 41787.8          | 5.181 | 30382         | 3.767 | 3.781          | 100.63             | 19 (Exp.)    |
| $f: 0^+_{\rho} \to I^+({}^{3}P_0) + I^-({}^{1}S_0)$        | 47026.1          | 5.830 | 31591         | 3.917 | 3.574          | 104.19             | 20 (Exp.)    |
| $F: 0^{\circ+}_{\mu} \to I^+({}^{3}P_0) + I^-({}^{1}S_0)$  | 47217.3          | 5.854 | 31400         | 3.893 | 3.600          | 96.30              | 11 (Exp.)    |
| $g: 0_{g}^{-} \to I^{+}({}^{3}P_{1}) + I^{-}({}^{1}S_{0})$ | 47085.8          | 5.838 | 32171         | 3.989 | 3.559          | 104.07             | 6 (Exp.)     |
| $G: 1_g \to I^+({}^3P_1) + I^-({}^1S_0)$                   | 47559.1          | 5.897 | 31697         | 3.930 | 3.530          | 106.60             | 11 (Exp.)    |
| $H: 1_u \to I^+({}^{3}P_1) + I^-({}^{1}S_0)$               | 48280.3          | 5.986 | 30976         | 3.841 | 3.630          | 107.96             | 11,21 (Exp.) |
| $0_u^- \to I^+({}^3P_1) + I^-({}^1S_0)$                    | 48646.5          | 6.031 | 30610         | 3.795 | 3.780          | 102.34             | 22 (Th.)     |
| $F'0^+_u \to I^+(^1D_2) + I^-(^1S_0)$                      | 51706.2          | 6.411 | 34191         | 4.239 | 3.480          | 131.00             | 11,23 (Exp.) |
| $1_g \to I^+(^1D_2) + I^-(^1S_0)$                          | 53216.3          | 6.598 | 32680         | 4.052 | 3.522          | 106.93             | 24 (Exp.)    |
| $2_u \to I^+({}^1D_2) + I^-({}^1S_0)$                      | 54262.7          | 6.728 | 31634         | 3.922 | 3.530          | 108.49             | 25 (Exp.)    |
| $2_g \to I^+(^1D_2) + I^-(^1S_0)$                          | 54489.6          | 6.756 | 31407         | 3.894 | 3.522          | 108.26             | 26 (Exp.)    |
| $1_{u} \rightarrow I^{+}(^{1}D_{2}) + I^{-}(^{1}S_{0})$    | 54706.2          | 6.783 | 31191         | 3.867 | 3.708          | 105.29             | 25 (Exp.)    |
| $0_g^+ \to I^+({}^1D_2) + I^-({}^1S_0)$                    | 55409.9          | 6.870 | 30487         | 3.780 | 3.825          | 97.10              | 20 (Exp.)    |
| $0^{+}_{u} \to I^{+}({}^{1}S_{0}) + I^{-}({}^{1}S_{0})$    | 65800.0          | 8.158 | 35871         | 4.447 | 3.500          | 100.00             | 27 (Th.)     |
| $0_g^+ \to I^+({}^1S_0) + I^-({}^1S_0)$                    | 69000.0          | 8.555 | 32671         | 4.051 | 3.800          | 100.00             | 27 (Th.)     |

Table S3 Same caption as Tab. S2 for the  ${\rm I}_2$  ion-pair states.

|                                                                             | $T_e$              |        | $D_e$              |       | R <sub>e</sub> | $\omega_e$         |           |
|-----------------------------------------------------------------------------|--------------------|--------|--------------------|-------|----------------|--------------------|-----------|
| $I_2^+$ state $\rightarrow$ ionic asymptote                                 | $\mathrm{cm}^{-1}$ | eV     | $\mathrm{cm}^{-1}$ | eV    | Å              | $\mathrm{cm}^{-1}$ | Ref.      |
| $X^2 \Pi_{\frac{3}{2}g} \to I^+({}^3P_2) + I({}^2P_{\frac{3}{2}})$          | 75069.0            | 9.307  | 21773              | 2.700 | 2.584          | 239.04             | 28 (Exp.) |
| $X^2 \Pi_{\frac{1}{2}g}^2 \to I^+({}^3P_2) + I({}^2P_{\frac{3}{2}})$        | 80266.0            | 9.952  | 16576              | 2.055 | 2.580          | 229.00             | 29 (Exp.) |
| $A^{2}\Pi_{\frac{3}{2}u}^{2} \to I^{+}(^{3}P_{2}) + I(^{2}P_{\frac{3}{2}})$ | 86367.0            | 10.708 | 10381              | 1.287 | 2.948          | 138.10             | 28 (Exp.) |
| $A^2 \Pi_{\frac{1}{2}u}^2 \to I^+({}^3P_2) + I({}^2P_{\frac{3}{2}}^2)$      | 95254.1            | 11.810 | 1588               | 0.197 | 2.980          | 120.00             | 8,30      |

Table S4 Same caption as Tab. S2 for the lowest energy states of  $I_2^+$  which correlate to the  $I + ({}^{3}P_2) + I({}^{2}P_{\frac{3}{2}})$  asymptote.

## Notes and references

- 1 G. A. Garcia, L. Nahon and I. Powis, Rev. Sci. Instrum., 2004, 75, 4989-4996.
- 2 P. Luc, <u>J. Molec. Spectrosc.</u>, 1980, **80**, 41–55.
- 3 R. Bacis, D. Cerny and F. Martin, J. Molec. Spectrosc., 1986, 118, 434-447.
- 4 J. B. Koffend, A. M. Sibai and R. Bacis, Journal De Physique, 1982, 43, 1639–1651.
- 5 S. Gerstenkorn, P. Luc and J. Vergès, J. Phys. B: At. Mol. Opt. Phys., 1981, 14, L193–L196.
- 6 S. Motohiro, S. Nakajima, K. Aoyama, E. Kagi, H. Fujiwara, M. Fukushima and T. Ishiwata, J. Chem. Phys., 2002, 117, 9777–9784.
- 7 S. Churassy, F. Martin, R. Bacis, J. Vergès and R. W. Field, J. Chem. Phys., 1981, 75, 4863–4868.
- 8 W. A. deJong, L. Visscher and W. C. Nieuwpoort, J. Chem. Phys., 1997, 107, 9046–9058.
- 9 V. V. Baturo, I. N. Cherepanov, S. S. Lukashov, S. A. Poretsky and A. M. Pravilov, J. Phys. B: At. Mol. Opt. Phys., 2016, 49, 125101.
- 10 S. Hoshino, T. Ishiwata, Y. Nakano, M. Fukushima, H. Fujiwara, M. Araki and K. Tsukiyama, <u>J. Phys. Chem. A</u>, 2019, **123**, 7590-7596.
- 11 P. J. Jewsbury, T. Ridley, K. P. Lawley and R. J. Donovan, J. Molec. Spectrosc., 1993, 157, 33-49.
- 12 V. V. Baturo, I. N. Cherepanov, S. S. Lukashov, S. A. Poretsky and A. M. Pravilov, J. Phys. B: At. Mol. Opt. Phys., 2015, 48, 055101.
- 13 M. E. Akopyan, V. V. Baturo, S. S. Lukashov, S. A. Poretsky and A. M. Pravilov, J. Phys. B: At. Mol. Opt. Phys., 2015, 48, 025101.
- 14 J. Tellinghuisen, J. Molec. Spectrosc., 1982, 94, 231-252.
- 15 J. Tellinghuisen, S. Fei, X. Zheng and M. C. Heaven, Chem. Phys. Lett., 1991, 176, 373-378.
- 16 J. P. Perrot, M. Broyer, J. Chevaleyre and B. Femelat, J. Molec. Spectrosc., 1983, 98, 161-167.
- 17 J. Tellinghuisen, J. Molec. Spectrosc., 2003, 217, 212-221.
- 18 G. W. King, I. M. Littlewood and J. R. Robins, Chem. Phys., 1981, 56, 145-156.
- 19 T. Ishiwata, T. Yotsumoto and S. Motohiro, Bull. Chem. Soc. Jpn., 2001, 74, 1605-1610.
- 20 T. Ishiwata, J. Yamada and K. Obi, J. Molec. Spectrosc., 1993, 158, 237-245.
- 21 S. Motohiro and T. Ishiwata, J. Molec. Spectrosc., 2000, 204, 286–290.
- 22 V. A. Alekseyev, Opt. Spectrosc., 2005, 99, 719-730.
- 23 T. Ishiwata, A. Tokunaga, T. Shinzawa and I. Tanaka, J. Molec. Spectrosc., 1986, 117, 89-101.
- 24 T. Ishiwata, H. Takekawa and K. Obi, J. Molec. Spectrosc., 1993, 159, 443–457.
- 25 S. Motohiro, A. Umakoshi and T. Ishiwata, J. Molec. Spectrosc., 2001, 208, 213-218.
- 26 Y. Nakano, H. Ukeguchi and T. Ishiwata, J. Chem. Phys., 2004, 121, 1397-1404.
- 27 V. A. Alekseev, Opt. Spectrosc., 2014, 116, 329-336.
- 28 L.-h. Deng, Y.-y. Zhu, C.-l. Li and Y.-q. Chen, J. Chem. Phys., 2012, 137, 054308.
- 29 M. C. R. Cockett, J. G. Goode, K. P. Lawley and R. J. Donovan, J. Chem. Phys., 1995, 102, 5226-5234.
- 30 A. J. Yencha, M. C. R. Cockett, J. G. Goode, R. J. Donovan, A. Hopkirk and G. C. King, Chem. Phys. Lett., 1994, 229, 347-352.