Supporting Information

CO₂ Electroreduction on Single Atom Catalysts: Role of the DFT Functional

Debolina Misra¹, Giovanni Di Liberto^{2*} and Gianfranco Pacchioni²

¹Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai, India, 600127

²Dipartimento di Scienza dei Materiali, Università di Milano – Bicocca, via R. Cozzi 55, 20125 Milano, Italy

S1 Working equations

The Gibbs free energy of each chemical species was calculated from DFT energies and adding thermodynamic correction following the approach of Norskov and co-workers:¹

$$\Delta G = \Delta E_{ads} + \Delta E_{ZPE} - T\Delta S$$

 ΔE_{ads} is related to the DFT energy, ΔE_{ZPE} and ΔS are the zero-point energy correction and entropy, respectively. The entropic contribution of gas phase molecules was taken from the NIST database,^{2,3} and that of solid-state species was neglected. The zero-point energy correction term was taken from the literature. The working equations are reported below:

 $\Delta G^{CO_2} = \Delta E^{CO_2}_{ads^2} + 0.68 \ eV$ $\Delta G^{H2O} = \Delta E^{H2O}_{ads} + 0.58 \ eV$ $\Delta G^{COOH} = \Delta E^{COOH}_{ads} + 1.03 \ eV$ $\Delta G^{OCHO} = \Delta E^{OCHO}_{ads} + 1.01 \ eV.$

S2 Supporting Figures and Tables

TM	U^{4-6} / ${ m eV}$	PBE		PBE+U	
		B.E. (eV)	$\mu_{\rm d}$	B.E. (eV)	$\mu_{\rm d}$
Sc	2.11	-8.43	0.00	-8.56	0.00
Ti	2.58	-8.50	0.88	-7.40	1.01
V	2.72	-7.86	2.09	-7.02	2.31
Cr	2.79	-7.20	3.25	-6.22	3.46
Mn	3.06	-6.80	2.94	-5.41	3.17
Fe	3.29	-7.39	1.86	-6.27	1.97
Со	3.42	-7.79	0.76	-6.69	1.02
Ni	3.40	-7.78	0.00	-7.09	0.00
Cu	4.18	-5.36	0.54	-5.18	0.58
Мо	2.30	-6.51	2.36	-5.57	2.76
Ru	2.79	-8.52	1.16	-6.93	1.55
Rh	3.04	-7.81	0.00	-6.16	0.68
Pd	3.33	-6.03	0.00	-5.43	0.00
Ag	1.87	-2.31	0.27	-2.13	0.44
W	2.08	-8.28	1.49	-7.31	1.81
Os	2.51	-8.02	0.00	-6.34	1.83
Ir	2.74	-8.62	0.00	-7.32	0.75
Pt	2.95	-7.99	0.00	-7.97	0.00
Au	3.17	-3.31	0.00	-2.92	0.00

Table S1: Calculated TM binding energies to the support and atomic magnetization obtained at PBE and PBE+U levels.

Figure S1: Structure of TMs anchored on 4N-Gr support with PBE and PBE+*U* frameworks.

Figure S2: Structure of CO₂ adsorbed on TM@4N-Gr support with PBE (left) and PBE+U (right) approaches.

Figure S3: Structure of (a) *COOH and (b) *OCHO adsorbed on TM@4N-Gr support with PBE (left) and PBE+U (right) approaches.

Figure S4: Structure of $*H_2O$ adsorbed on TM@4N-Gr support with PBE (left) and PBE+U (right) approaches.

Figure S5: Structure of $*CO_2$ adsorbed on TM@4N-Gr support in the presence of $*H_2O$ with PBE (left) and PBE+*U* (right) approaches.

References

- 1 J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, Trends in the Exchange Current for Hydrogen Evolution, *J Electrochem Soc*, 2005, **152**, J23.
- 2 Y. Yang, J. Li, C. Zhang, Z. Yang, P. Sun, S. Liu and Q. Cao, Theoretical Insights into Nitrogen-Doped Graphene-Supported Fe, Co, and Ni as Single-Atom Catalysts for CO ₂ Reduction Reaction, *The Journal of Physical Chemistry C*, 2022, **126**, 4338–4346.

- D. Misra, G. Di Liberto and G. Pacchioni, CO2 electroreduction on single atom catalysts: Is water just a solvent?, *J Catal*, 2023, **422**, 1–11.
- 4 G. Di Liberto, L. A. Cipriano and G. Pacchioni, Universal Principles for the Rational Design of Single Atom Electrocatalysts? Handle with Care, *ACS Catal*, 2022, 5846–5856.
- 5 I. Barlocco, G. Di Liberto and G. Pacchioni, Hydrogen and oxygen evolution reactions on single atom catalysts stabilized by a covalent organic framework, *Energy Advances*, , DOI:10.1039/D3YA00162H.
- 6 I. Barlocco, L. A. Cipriano, G. Di Liberto and G. Pacchioni, Modeling Hydrogen and Oxygen Evolution Reactions on Single Atom Catalysts with Density Functional Theory: Role of the Functional, *Adv Theory Simul*, 2022, 2200513.