Supporting information

s valence electrons in cations of metal oxides serving as

descriptors for electron and hole polarons

Junyan Tao, and Taifeng Liu*

National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, China. *E-mail: T. Liu:tfliu@vip.henu.edu.cn*

For each material, we use supercell approach to calculate the polaron formation. As the lattice parameters are different, the details of the supercell are different. Here, we explain the calculation parameters required for each material individually.

We selected rutile TiO₂ with space group I4₁/amd and V₂O₅ with space group pmmn for $2 \times 2 \times 1$ and $3 \times 3 \times 3$ cell expansion respectively. TiO₂ supercell parameters are a =10.62 Å, b =11.17 Å, c= 9.40 Å, $\alpha = \beta = \gamma = 90^{\circ}$, V₂O₅ supercell parameters are a =10.90 Å, b =14.26 Å, c= 11.55 Å, $\alpha = \beta = \gamma = 90^{\circ}$. We used supercells for subsequent calculations.

We used SrTiO₃ unit cell with space group P42/nmc for structural optimization, where a = b = c = 3.945 Å, $\alpha = \beta = \gamma = 90^{\circ}$. After the optimization is completed, we carry out $3 \times 3 \times 3$ cell expansion, use supercell for electron polaron formation research.

We used ZrO₂ unit cell with space group P4₂/nmc for calculation, where a=3.64Å, b=3.64Å, c=5.32Å, $\alpha=\beta=\gamma=90^{\circ}$. For the polarons calculations, we used a 3×3×2 supercell with 108 atoms. For MoO₃, we used primitive unit cells with a=3.76 Å, b=3.96 Å, c=14.43 Å, $\alpha=\beta=\gamma=90^{\circ}$ for 3 × 3 × 1 cell expansion.

We selected HfO₂ primitive unit cells with a=b=4.86 Å, c =3.23 Å, $\alpha = \gamma = \beta = 90^{\circ}$ for 2×2×2 cell expansion. For Ta₂O₅ and NaTaO₃ we selected primitive unit cells with a=12.89 Å, b=4.87 Å, c =5.54 Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 104.3^{\circ}$ and a=5.53 Å, b=5.59 Å, c =7.87 Å, $\alpha = \gamma = \beta = 90^{\circ}$ for 1×2×2 and 2×2×2 cell expansion and used the supercell containing

122 and 160 atoms for calculation.