Supplementary Information File

Color Tunable Luminescence in ThO₂: Er³⁺, Yb³⁺ Nanocrystals: A Promising New Platform for Upconversion

Debarati Das^{1,2}, Santosh K. Gupta^{1,2*}, Reshmi T. Parayil^{1,2}, B. Modak^{2,3}, and K. Sudarshan^{1,2,#}

¹Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai – 400085, India
²Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
³Chemistry Division, Bhabha Atomic Research Centre, Mumbai – 400085, India

Corresponding Author Email: <u>*santoshg@barc.gov.in</u>, <u>#kathis@barc.gov.in</u>

S1. Computational Details

Density functional theory (DFT) calculations with spin polarized condition have been carried out with Vienna ab initio simulation package (VASP) with projector augmented wave (PAW) pseudo potentials.^{1,2} Perdew-Burke-Ernzerhof (PBE) functional under generalized gradient approximation (GGA) has been considered during geometry optimization processes by relaxing ionic positions, cell parameter, and cell volume.³ Electronic structure calculations were carried out with the optimized geometries. An energy cut off value of 500 eV has been chosen with self-consistent energy convergence criteria of 10⁻⁶eV. Monkhorst and Pack scheme has been employed for sampling of Brillouin zone using Γ -centered k-point mesh value of 16 × 16 × 16.⁴ We have employed hybrid DFT functional of the type Heyd, Scuseria, and Ernzerhof (HSE) for electronic structure calculations for more accurate calculation of the band gap,⁵ and the corresponding exchange-correlation energy (E_{XC}^{HSE}) is expressed as

$$E_{XC}^{HSE} = \alpha E_X^{SR}(\mu) + (1 - \alpha) E_X^{PBE, SR}(\mu) + E_X^{PBE, LR}(\mu) + E_C^{PBE}$$
(1)

where, SR and LR indicate the electron-electron interaction energy at short-range and longrange, respectively. ' α ' and ' μ ' are the mixing coefficient (20 % of mixing exact exchange) and screening parameter (0.2 Å⁻¹), respectively. For phonon calculations of ThO₂, the finite displacement method was chosen as implemented in the PHONOPY program.⁶ In this method, first, perturbed cells containing 96 atoms (2 × 2 × 2 supercell) were created by displacing atoms from their equilibrium positions. Then, the forces acting on the displaced atoms were calculated using a k-point mesh of 7 × 7 × 7 within GGA. The force constant matrix was generated from the obtained force set and used to calculate the phonon dispersion plot.

S2. Crystallite size from powder X-ray diffraction

From powder X-ray diffraction patterns, the crystallite sizes (d) were calculated using Debye Scherrer equation:

$$d = \frac{k\lambda}{\sqrt{(B_S^2 - B_M^2)\cos\theta}}$$
(2)

Here k is the Scherrer constant (0.9), λ is the wavelength of Cu-K α line (1.5406 Å), and θ is the angle corresponding to the Bragg reflection used for calculating the FWHM. B_S and B_M are the FWHM value (in radian) of the selected diffraction peaks of sample and reference (LaB₆). The FWHM has been calculated by fitting the curve to a Gaussian function. The instrumental broadening has been considered by subtracting the contribution from the standard LaB₆.

Figure S1. Rietveld refinement of the XRD spectra of $ThO_2:1\% Er^{3+},x\% Yb^{3+}$ Nanophopshor (x=1, 2, 5, 10 and 15)

Figure S2. Crystal structure of ThO₂.

Table S1. Parameters from Rietveld refinement of the XRD patterns of ThO ₂ :1%Er ³⁺ ,
x%Yb ³⁺ Nanophopshor (x=1, 3, 5, 10 and 15)

~ .		x x	.
Sample	Fit Parameters	Lattice Parameters (A)	Lattice Volume
-			(Å ³)
Undoped ThO ₂	$R_p = 4.94$; $R_{wp} = 6.14$	5.5984(1)	175.46(1)
	$R_{exp} = 3.98$; $\chi^2 = 2.38$		
ThO ₂ : 1% Er, 1% Yb	$Rp = 4.75; R_{wp} = 5.89$	5.5990(1)	175.52(1)
	$R_{exp} = 3.68; \chi^2 = 2.57$		
ThO ₂ : 1% Er, 2% Yb	$R_p = 5.80$; $R_{wp} = 8.76$	5.5765(6)	173.41(2)
	$R_{exp} = 4.09$; $\chi^2 = 4.59$		
ThO ₂ : 1% Er, 5% Yb	$R_p = 4.49; R_{wp} = 5.70$	5.5837(1)	174.09(1)
	$R_{exp}^{1} = 3.89$; $\chi^{2} = 2.15$		
ThO ₂ : 1% Er, 10% Yb	$R_p = 5.53; R_{wp} = 7.22$	5.5824(2)	173.96(1)
	$R_{exp} = 4.72; \chi^2 = 2.34$		
ThO ₂ : 1% Er, 15% Yb	$R_p = 5.20$; $R_{wp} = 7.28$	5.5691(2)	172.72(1)
	$\hat{R}_{exp} = 4.08 ; \chi^2 = 3.18$		

Sample	Х	У				
ThO ₂ -1%Er, 1%Yb	0.28034	0.70107				
ThO ₂ -1%Er, 2%Yb	0.27558	0.70495				
ThO ₂ -1%Er, 5%Yb	0.28373	0.69228				
ThO ₂ -1%Er, 10%Yb	0.32902	0.64789				
ThO ₂ -1%Er, 15%Yb	0.44734	0.53602				

Table S2: Color coordinates values extracted from corrected UC emission spectra of ThO₂:1%Er³⁺, x%Yb³⁺nanophopshor(x=1, 3.5.10 and 15).

Table S3: UCL lifetime values extracted from corrected decay curve after biexponential fitting of ThO₂:1%Er³⁺, x%Yb³⁺Nanophopshor (x=1, 3,5,10 and 15).

Sample	Τ ₁ (μs)	T ₂ (μs)	Population of T ₁ (%)	Population of T ₂ (%)
ThO ₂ -1Er, 1Yb	236.9	514.7	54.75	45.25
ThO ₂ -1Er, 2Yb	247.2	523.7	44.41	55.59
ThO ₂ -1Er, 5Yb	46.7	232.3	47.14	52.86
ThO ₂ -1Er, 10Yb	24.5	107.1	67.96	32.04
ThO ₂ -1Er, 15Yb	23.3	57.8	64.19	35.81

S3. References

- 1. Blöchl, P. E., Projector augmented-wave method. *Physical Review B* 1994, 50, (24), 17953.
- 2. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. *Physical Review B* **1999**, 59, (3), 1758.
- 3. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. *Physical review letters* **1996**, 77, (18), 3865.
- 4. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. *Physical Review B* **1976**, 13, (12), 5188.
- 5. Paier, J.; Marsman, M.; Hummer, K.; Kresse, G.; Gerber, I. C.; Ángyán, J. G., Screened hybrid density functionals applied to solids. *The Journal of chemical physics* **2006**, 124, (15), 154709.
- Togo, A.; Oba, F.; Tanaka, I., First-principles calculations of the ferroelastic transition between rutile-type and CaCl₂-type SiO₂ at high pressures. *Physical Review B* 2008, 78, (13), 134106.