Supporting information for:

Controlling Excited-State Dynamics via Protonation of Naphthalene-Based Azo Dyes

Shea M. Martin, ^a Robert C. Hamburger, ^a Tao Huang, ^a Lisa A. Fredin^{*a} and Elizabeth R. Young^{*a}

a. Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA 18015, USA.

Table of Contents

S	ummary of 1 – 4 Results:	.5
	Table S1. Photophysical Data and Excited-State Lifetimes Recorded of Azo 1-4	.5
	Figure S1. Figure summarizing the photophysics and proposed mechanism for the unprotonated naphthalene-based azo dyes for comparison to this work on the protonated moieties.	.5
E	perimental Results	.6
	Figure S2. UV-visible and photoluminescence (λ_{ex} = 500 nm) spectra of 1H – 4H in acetonitrile. 4H shows no photoluminescence.	.6
	Figure S3. (left column) Protonation titration data for $1H - 4H$ and (right column) Benesi-Hildebrand plots with non-weighted fitting lines shown for the titration of $1 - 4$ with H ₂ SO ₄ to make $1H - 4H$.7
	Figure S4. Hammett parameter plot with calculated pK_as of 1 - 4 .	.8
	Figure S5. Photoisomerization spectra of (left column) $1 - 4$ and (right column) $1H - 4H$.9
	Figure S6. (left) Photoisomerization spectra for $1H - 4H$ at various illumination wavelengths. (right) Comparison of the initial protonated spectrum (thin line) with the difference spectrum (thicker line) obtained by subtracting the original protonated spectrum from the most changed isomerization spectrum for $1H - 4H$. The difference spectra clearly show a small bleach of the protonated dye upor photoisomerization for $1H - 3H$. While no photoisomerization occurs for $4H$.	า 10
	Figure S7. Comparison of difference spectra of photoisomerization endpoints for 1H – 4H	11
Т	ansient Absorption Fitting	12
	Figure S8. Heat map of 1H TAS before (left), and after (right) chirp correction. Left) Raw pump-probe heat map at 475 nm excitation. x-axis = wavelength; y-axis = delay step position (exponential spacing color map corresponds to ΔA . Right) corrected linear time pump-probe map at 475 nm excitation. x- axis = wavelength; y-axis = delay step position; color map corresponds to ΔA	;); 13
	Figure S9. TAS data and fits of 1H including: Top left) Chirp-corrected pump-probe heat map at 475 nm excitation. x-axis = wavelength; y-axis = delay step position; color map corresponds to ΔA . Top center) Reconstructed surfaces from fit DADS. Top right) Fit residual plots. Bottom right) SVD global	

Computational Results21

Figure S18. MO diagram for 1H, 3H, and 4H. B3LYP/6-311G(d.p)/PCM(ACN).....23

Figure S19. Comparison of the potential energy surfaces of 1H along the phenyl and naphthalene moieties inversion ($\angle^{Ph}CNN$ and $\angle^{Nap}CNN$) <i>trans-cis</i> isomerization pathway. B3LYP/6-311G(d,p)/PCM(ACN).	24
Figure S20. Comparison of the potential energy surfaces of 1 and 1H along the torsional (\angle CNNC) an inversion (\angle^{Nap} CNN) <i>trans-cis</i> isomerization pathway. B3LYP/6-311G(d,p)/PCM(ACN). The S ₁ PEC curris emphasized with a bold, blue line (circle data points). Other singlet excited states are show in grey and triplet states are red.	ıd ve <i>,</i> , 24
Figure S21. Comparison of the potential energy surfaces of 3 and 3H along the torsional (\angle CNNC) an inversion (\angle^{Nap} CNN) <i>trans-cis</i> isomerization pathway. B3LYP/6-311G(d,p)/PCM(ACN). The S ₁ PEC curvis emphasized with a bold, blue line (circle data points). Other singlet excited states are show in grey and triplet states are red.	ıd ve ⁄, 25
Figure S22. Comparison of the potential energy surfaces of 4 and 4H along the torsional (\angle CNNC) an inversion (\angle^{Nap} CNN) <i>trans-cis</i> isomerization pathway. B3LYP/6-311G(d,p)/PCM(ACN). The S ₁ PEC curris emphasized with a bold, blue line (circle data points). Other singlet excited states are show in greated triplet states are red.	ıd ve <i>,</i> , 25
TDDFT tables	26
Table S2: TDDFT energies of singlet excitations for 1H in its optimized ground state geometry	26
Table S3: TDDFT energies of singlet excitations for 3H in its optimized ground state geometry	29
Table S4: TDDFT energies of singlet excitations for 4H in its optimized ground state geometry	31
Table S1. TDDFT Energies of 1H along the torsional \angle CNNC of the S0 trans-cis isomerization	34
Table S2. TDDFT Energies of 1H along the inversion \angle ^{Nap} CNN of the S ₀ trans-cis isomerization	35
Table S3. TDDFT Energies of 3H along the torsional \angle CNNC of the S ₀ trans-cis isomerization	35
Table S4. TDDFT Energies of 3H along the inversion \angle ^{Nap} CNN of the S ₀ trans-cis isomerization	36
Table S5. TDDFT Energies of 4H along the torsional \angle CNNC of the S ₀ trans-cis isomerization	36
Table S6. TDDFT Energies of 4H along the inversion \angle ^{Nap} CNN of the S ₀ trans-cis isomerization	36
Spin orbit coupling tables	38
Table S7. Spin-orbit coupling constants between S ₀ – S ₆ and T ₁ – T ₆ states of azo 1H in its optimized ground-state geometry B3LYP/6-311G(d.p)/PCM(ACN)	38
Table S8. Spin-orbit coupling constants between S ₀ – S ₆ and T ₁ – T ₆ states of azo 3H in its optimized ground-state geometry B3LYP/6-311G(d.p)/PCM(ACN)	38
Table S9. Spin-orbit coupling constants between S ₀ – S ₆ and T ₁ – T ₆ states of azo 4H in its optimized ground-state geometry B3LYP/6-311G(d.p)/PCM(ACN)	38
Coordinates	39
Table S10. nap-azoH-ph: ${f 1}$ with protonation of N on the phenyl side	39
Table S11. nap-Hazo-ph: also called 1H	40
Table S12. nap-azoH-phOMe: 3 with protonation of N on the phenyl side	41
Table S13. nap-Hazo-phOMe: also called 3H	42

Table S14. nap-azoH-phNMe2: 4 with protonation of N on the phenyl side	43
Table S15. nap-Hazo-phNMe2: also called 4H	44
Table S16. nap-azo-phNMe2H: 4 with protonation of N on the dimethylamine functionality	45

Summary of 1 - 4 Results:

	τ_1 (ps) *S ₁ \rightarrow S ₁	$\begin{array}{c} \tau_2 \left(ps \right) \\ S_1 {\rightarrow}^* S_0 \end{array}$	$ au_3$ (ps) *S ₀ \rightarrow S ₀	τ₄ (ps) *S₀→ <i>cis</i> -S₀	τ₅ (min) [‡] cis-S₀→ trans- S₀
1	0.64 ± 0.20	2.9 ± 0.3	22 ± 3	n/o	280
2	1.19 ± 0.20	3.0 ± 0.5	32 ± 4	n/o	12
3	1.38 ± 0.14	3.7 ± 0.7	25 ± 1	n/o	24
4	0.70 ± 0.04	3.4 ± 0.9	16. ± 1	38 ± 5	8

Table S1. Photophysical Data and Excited-State Lifetimes Recorded of Azo 1-4

n/o indicates that the process is not observed on our TAS measurements due to the spectral observation window available in our measurements. Based on the residual component (i.e. τ_5 inf, we infer that the process does occur, but that we are not able to observe it in TAS).

[‡] Based on steady-state reversion kinetics.

Figure S1. Figure summarizing the photophysics and proposed mechanism for the unprotonated naphthalene-based azo dyes for comparison to this work on the protonated moieties.

Experimental Results

Figure S2. UV-visible and photoluminescence (λ_{ex} = 500 nm) spectra of **1H** – **4H** in acetonitrile. **4H** shows no photoluminescence.

Figure S3. (left column) Protonation titration data for 1H - 4H and (right column) Benesi-Hildebrand plots with non-weighted fitting lines shown for the titration of 1 - 4 with H₂SO₄ to make 1H - 4H.

Figure S4. Hammett parameter plot with calculated pK_{as} of **1** - **4**.

Figure S5. Photoisomerization spectra of (left column) 1 - 4 and (right column) 1H - 4H.

Figure S6. (left) Photoisomerization spectra for 1H - 4H at various illumination wavelengths. (right) Comparison of the initial protonated spectrum (thin line) with the difference spectrum (thicker line) obtained by subtracting the original protonated spectrum from the most changed isomerization spectrum for 1H - 4H. The difference spectra clearly show a small bleach of the protonated dye upon photoisomerization for 1H - 3H. While no photoisomerization occurs for 4H.

Figure S7. Comparison of difference spectra of photoisomerization endpoints for 1H – 4H.

Transient Absorption Fitting

For each of the azo dyes 1H - 4H, we show the heat map of our TAS data before and after the chirp correction is applied in a single SI figure. In a second figure, we show a multi-panel series of data, fits and analysis of the fits. We provide here a detailed explanation of each panel of those figures below.

The top left panel labeled "Raw Data Surface" is the original data for each dye after chip correction, and other data preparation are applied. Global analysis fitting is performed providing a model featuring DADS and associated lifetimes reported in the text (and in the bottom left panel of the SI figure). Combining the DADS, lifetimes, time zero, and IRF produced by the fit model, the TAS surface is "reconstructed". The reconstructed data surface is shown in the top middle panel, labeled "Reconstructed Surface". From this surface a selection of spectra are presented in the bottom middle panel labeled "Reconstructed Representative Spectra". Finally, the original data is compared to the reconstructed data in the right most column. Top right panel is a heat map of the residual between the original data surface and the reconstructed surface. The residual surface was used to evaluate the global analysis fit. Fit models were selected or modified in order to reduce or remove structure from the residual surface. Residual surfaces lacking distinct features and more closely resembling noise, resulted in a favoring of that fit. The root mean square error (RSE) value was calculated for each residual surface as a measure of how well that fit matched the data surface. This value was also used to identify fit improvements when differences became difficult to identify visually. RSE values were only used to judge improvements to fits for the same data surface, and were not assessed between data surfaces. On the lower right panel, single wavelength TAS data at a range of lifetime (dotted data points) are displayed. Solid lines representing the single wavelength traces constructed using the fitted lifetimes from global analysis overlay the data. This plot is another method of evaluating the fits obtained using global analysis.

Figure S8. Heat map of **1H** TAS before (left), and after (right) chirp correction. Left) Raw pumpprobe heat map at 475 nm excitation. x-axis = wavelength; y-axis = delay step position (exponential spacing); color map corresponds to ΔA . Right) corrected linear time pump-probe map at 475 nm excitation. x-axis = wavelength; y-axis = delay step position; color map corresponds to ΔA .

Figure S9. TAS data and fits of **1H** including: Top left) Chirp-corrected pump-probe heat map at 475 nm excitation. x-axis = wavelength; y-axis = delay step position; color map corresponds to ΔA . Top center) Reconstructed surfaces from fit DADS. Top right) Fit residual plots. Bottom right) SVD global fitting spectral components (DADS). Bottom center) Selected representative spectra depicting raw data surface. Bottom right) Single value kinetic traces of TAS data at select wavelengths.

Figure S10. Heat map of **2H** TAS before (left), and after (right) chirp correction. Left) Raw pumpprobe heat map at 550 nm excitation. x-axis = wavelength; y-axis = delay step position (exponential spacing); color map corresponds to ΔA . Right) corrected linear time pump-probe map at 550 nm excitation. x-axis = wavelength; y-axis = delay step position; color map corresponds to ΔA .

Figure S11. TAS data and fits of **2H** including: Top left) Chirp-corrected pump-probe heat map at 550 nm excitation. x-axis = wavelength; y-axis = delay step position; color map corresponds to ΔA . Top center) Reconstructed surfaces from fit DADS. Top right) Fit residual plots. Bottom right) SVD global fitting spectral components (DADS). Bottom center) Selected representative spectra depicting raw data surface. Bottom right) Single value kinetic traces of TAS data at select wavelengths.

Figure S12. Heat map of **3H** TAS before (left), and after (right) chirp correction. Left) Raw pumpprobe heat map at 550 nm excitation. x-axis = wavelength; y-axis = delay step position (exponential spacing); color map corresponds to ΔA . Right) corrected linear time pump-probe map at 550 nm excitation. x-axis = wavelength; y-axis = delay step position; color map corresponds to ΔA .

Figure S13. Heat map of **3H** TAS before (left), and after (right) chirp correction. Left) Raw pumpprobe heat map at 590 nm excitation. x-axis = wavelength; y-axis = delay step position (exponential spacing); color map corresponds to ΔA . Right) corrected linear time pump-probe map at 590 nm excitation. x-axis = wavelength; y-axis = delay step position; color map corresponds to ΔA .

Figure S14. TAS data and fits of **4H** including: Top left) Chirp-corrected pump-probe heat map at 550 nm excitation. x-axis = wavelength; y-axis = delay step position; color map corresponds to ΔA . Top center) Reconstructed surfaces from fit DADS. Top right) Fit residual plots. Bottom right) SVD global fitting spectral components (DADS). Bottom center) Selected representative spectra depicting raw data surface. Bottom right) Single value kinetic traces of TAS data at select wavelengths.

Figure S15. TAS data and fits of **4H** including: Top left) Chirp-corrected pump-probe heat map at 585 nm excitation. x-axis = wavelength; y-axis = delay step position; color map corresponds to ΔA . Top center) Reconstructed surfaces from fit DADS. Top right) Fit residual plots. Bottom right) SVD global fitting spectral components (DADS). Bottom center) Selected representative spectra depicting raw data surface. Bottom right) Single value kinetic traces of TAS data at select wavelengths.

Computational Results

Figure S16. DFT relative energies of 4H protonated at each of the three nitrogen sites and the TDDFT predicted transitions for each protonation site in comparison to the experimental absorption spectrum.

Figure S17. (top) Relative energies of the naphthalene-adjacent and phenyl-adjacent protonated **1**, **3**, and **4**. (bottom) TDDFT predicted transitions for the naphthalene-adjacent and phenyl-adjacent protonated **1H**. Relative SCF energies and TDDFT transitions of dyes protonated at the naphthalene-adjacent azo bond site are shown in blue, and those at the phenyl-adjacent azo bond site are shown in cel. B3LYP/6-311G(d.p)/PCM(ACN)

Figure S18. MO diagram for 1H, 3H, and 4H. B3LYP/6-311G(d.p)/PCM(ACN)

Potential Energy Curves of 1, 1H, 3, 3H and 4, 4H.

Figure S19. Comparison of the potential energy surfaces of **1H** along the phenyl and naphthalene moieties inversion ($\angle^{Ph}CNN$ and $\angle^{Nap}CNN$) *trans-cis* isomerization pathway. B3LYP/6-311G(d,p)/PCM(ACN).

Figure S20. Comparison of the potential energy surfaces of **1** and **1H** along the torsional (\angle CNNC) and inversion (\angle ^{Nap}CNN) *trans-cis* isomerization pathway. B3LYP/6-311G(d,p)/PCM(ACN). The S₁ PEC curve is emphasized with a bold, blue line (circle data points). Other singlet excited states are show in grey, and triplet states are red.

Figure S21. Comparison of the potential energy surfaces of **3** and **3H** along the torsional (\angle CNNC) and inversion (\angle ^{Nap}CNN) *trans-cis* isomerization pathway. B3LYP/6-311G(d,p)/PCM(ACN). The S₁ PEC curve is emphasized with a bold, blue line (circle data points). Other singlet excited states are show in grey, and triplet states are red.

Figure S22. Comparison of the potential energy surfaces of **4** and **4H** along the torsional (\angle CNNC) and inversion (\angle ^{Nap}CNN) *trans-cis* isomerization pathway. B3LYP/6-311G(d,p)/PCM(ACN). The S₁ PEC curve is emphasized with a bold, blue line (circle data points). Other singlet excited states are show in grey, and triplet states are red.

TDDFT tables

Excited	Energy	Wavelength	Oscillator	Transition	Transition
States	(eV)	(nm)	Strength		Contribution
1	2.2095	561.14	f=0.2392	HOMO-1 -> LUMO	-0.25619
				HOMO -> LUMO	0.65781
2	2.7710	447.43	f=0.8816	HOMO-1 -> LUMO	0.65559
				HOMO -> LUMO	0.26224
3	3.1923	388.39	f=0.0225	HOMO-2 -> LUMO	0.70108
4	3.8023	326.08	f=0.1547	HOMO-4 -> LUMO	-0.25140
				HOMO-3 -> LUMO	0.64090
5	3.9614	312.98	f=0.0013	HOMO-5 -> LUMO	0.69661
6	4.1403	299.45	f=0.0715	HOMO-4 -> LUMO	0.64720
				HOMO-3 -> LUMO	0.22733
7	4.4018	281.66	f=0.0687	HOMO-3 -> LUMO	-0.10123
				HOMO-1 -> LUMO+1	0.11853
				HOMO-1 -> LUMO+3	0.12029
				HOMO -> LUMO+1	0.66190
8	4.6461	266.86	f=0.0592	HOMO-1 -> LUMO+1	0.51284
				HOMO -> LUMO+1	-0.13863
				HOMO -> LUMO+2	0.17230
				HOMO -> LUMO+3	-0.40979
9	4.9631	249.81	f=0.0000	HOMO-7 -> LUMO	0.69483
10	5.1302	241.68	f=0.0725	HOMO-6 -> LUMO	0.53293
				HOMO -> LUMO+2	0.41146
				HOMO -> LUMO+3	0.10245
11	5.1655	240.02	f=0.0055	HOMO-6 -> LUMO	-0.41803
				HOMO -> LUMO+2	0.51482
				HOMO -> LUMO+3	0.16708
12	5.3244	232.86	f=0.0000	HOMO-9 -> LUMO	0.20730
				HOMO-8 -> LUMO	0.66602
13	5.4228	228.64	f=0.0000	HOMO-9 -> LUMO	0.66610
				HOMO-8 -> LUMO	-0.21036
14	5.5772	222.31	f=0.4155	HOMO-3 -> LUMO+1	-0.27699
				HOMO-1 -> LUMO+1	0.35205
				HOMO-1 -> LUMO+2	-0.24231
				HOMO -> LUMO+3	0.40505
				HOMO -> LUMO+5	-0.14543
15	5.6834	218.15	f=0.0272	HOMO-3 -> LUMO+1	-0.16407
				HOMO-2 -> LUMO+1	-0.37264
				HOMO-2 -> LUMO+3	-0.11248
				HOMO-1 -> LUMO+1	0.12037

Table S2: TDDFT energies of singlet excitations for **1H** in its optimized ground state geometry

				HOMO-1 -> LUMO+2	0.50027
				HOMO -> LUMO+2	-0.10907
16	5.7542	215.47	f=0.0073	HOMO-3 -> LUMO+1	-0.22127
				HOMO-2 -> LUMO+1	0.56431
				HOMO-1 -> LUMO+2	0.26882
				HOMO -> LUMO+4	0.14293
				HOMO -> LUMO+5	-0.14938
17	5.7798	214.51	f=0.0007	HOMO-12 -> LUMO	0.10201
				HOMO-10 -> LUMO	0.69409
18	5.7931	214.02	f=0.0963	HOMO-4 -> LUMO+1	0.15108
				HOMO-3 -> LUMO+1	-0.27682
				HOMO-2 -> LUMO+1	-0.19267
				HOMO-1 -> LUMO+1	-0.13762
				HOMO-1 -> LUMO+2	-0.22905
				HOMO -> LUMO+3	-0.24290
				HOMO -> LUMO+4	0.34912
				HOMO -> LUMO+5	-0.28608
19	5.8984	210.20	f=0.0497	HOMO-4 -> LUMO+1	0.18147
				HOMO-3 -> LUMO+1	0.16138
				HOMO-2 -> LUMO+2	0.13562
				HOMO-1 -> LUMO+3	0.52011
				HOMO -> LUMO+4	-0.19798
				HOMO -> LUMO+5	-0.27124
20	6.0081	206.36	f=0.1838	HOMO-11 -> LUMO	-0.11779
				HOMO-4 -> LUMO+1	-0.18668
				HOMO-1 -> LUMO+1	0.13415
				HOMO-1 -> LUMO+3	0.34317
				HOMO -> LUMO+4	0.40391
				HOMO -> LUMO+5	0.33563
21	6.1651	201.11	f=0.0001	HOMO-12 -> LUMO	0.68836
22	6.1774	200.70	f=0.2293	HOMO-11 -> LUMO	-0.33191
				HOMO-3 -> LUMO+1	0.39707
				HOMO-1 -> LUMO+3	-0.20712
				HOMO-1 -> LUMO+5	0.13118
				HOMO -> LUMO+4	0.24783
				HOMO -> LUMO+5	-0.22715
23	6.2203	199.32	f=0.0487	HOMO-11 -> LUMO	0.51886
				HOMO-4 -> LUMO+1	0.16164
				HOMO-3 -> LUMO+1	0.20251
				HOMO-2 -> LUMO+2	-0.19636
				HOMO-2 -> LUMO+3	-0.17768
				HOMO-1 -> LUMO+1	0.12773
				HOMO -> LUMO+3	0.15161
				HOMO -> LUMO+4	0.12553

24	6.3270	195.96	f=0.0410	HOMO-4 -> LUMO+1	-0.11018
				HOMO-4 -> LUMO+3	0.13572
				HOMO-3 -> LUMO+2	0.37621
				HOMO-2 -> LUMO+3	0.31177
				HOMO-2 -> LUMO+4	-0.12963
				HOMO-1 -> LUMO+2	0.17503
				HOMO-1 -> LUMO+5	-0.27821
				HOMO -> LUMO+4	0.15319
				HOMO -> LUMO+5	-0.12534
25	6.3499	195.25	f=0.0021	HOMO-4 -> LUMO+1	0.18474
				HOMO-4 -> LUMO+2	0.13870
				HOMO-4 -> LUMO+3	-0.13801
				HOMO-3 -> LUMO+2	0.15849
				HOMO-3 -> LUMO+3	0.23060
				HOMO-2 -> LUMO+3	0.26920
				HOMO-1 -> LUMO+2	0.11920
				HOMO-1 -> LUMO+4	-0.22447
				HOMO-1 -> LUMO+5	0.40831
26	6.5103	190.44	f=0.0075	HOMO-13 -> LUMO	0.19554
				HOMO-4 -> LUMO+1	0.50070
				HOMO-3 -> LUMO+2	0.10618
				HOMO-3 -> LUMO+3	-0.20446
				HOMO-1 -> LUMO+4	0.21905
				HOMO -> LUMO+5	0.27898
27	6.5289	189.90	f=0.1142	HOMO-13 -> LUMO	-0.10004
				HOMO-4 -> LUMO+1	-0.13700
				HOMO-3 -> LUMO+3	0.15606
				HOMO-2 -> LUMO+2	-0.30302
				HOMO-1 -> LUMO+3	0.11783
				HOMO-1 -> LUMO+4	0.51557
				HOMO-1 -> LUMO+5	0.18633
28	6.5671	188.80	f=0.0010	HOMO -> LUMO+6	0.69595
29	6.7102	184.77	f=0.0409	HOMO-3 -> LUMO+2	0.30623
				HOMO-3 -> LUMO+3	-0.11024
				HOMO-2 -> LUMO+2	0.34523
				HOMO-2 -> LUMO+3	-0.32735
				HOMO-2 -> LUMO+4	-0.23277
				HOMO-1 -> LUMO+4	0.17694
				HOMO-1 -> LUMO+5	0.16842
30	6.7569	183.49	f=0.0000	HOMO-7 -> LUMO+1	0.53299
				HOMO-5 -> LUMO+1	0.45007

Excited	Energy	Wavelength	Oscillator	Transition	Transition
States	(eV)	(nm)	Strength		Contribution
1	2.3111	536.48	f=0.4743	HOMO-1 -> LUMO	-0.26084
				HOMO -> LUMO	0.65647
2	2.7364	453.09	f=0.8251	HOMO-2 -> LUMO	-0.10207
				HOMO-1 -> LUMO	0.64579
				HOMO -> LUMO	0.26782
3	3.4943	354.82	f=0.0138	HOMO-3 -> LUMO	0.50929
				HOMO-2 -> LUMO	0.47470
4	3.7579	329.93	f=0.1671	HOMO-4 -> LUMO	-0.12121
				HOMO-3 -> LUMO	-0.47249
				HOMO-2 -> LUMO	0.47497
				HOMO-1 -> LUMO	0.10087
5	4.0746	304.29	f=0.0013	HOMO-5 -> LUMO	0.69507
6	4.1547	298.42	f=0.0052	HOMO-4 -> LUMO	0.66387
				HOMO-2 -> LUMO	0.12975
				HOMO -> LUMO+1	0.16360
7	4.2889	289.08	f=0.0569	HOMO-4 -> LUMO	-0.16846
				HOMO-1 -> LUMO+3	0.11685
				HOMO -> LUMO+1	0.64656
				HOMO -> LUMO+3	-0.10407
8	4.5887	270.20	f=0.0620	HOMO-2 -> LUMO+1	-0.11519
				HOMO-1 -> LUMO+1	0.51886
				HOMO -> LUMO+1	-0.14814
				HOMO -> LUMO+2	0.19988
				HOMO -> LUMO+3	-0.37049
9	4.8784	254.15	f=0.1698	HOMO-6 -> LUMO	0.13326
				HOMO-1 -> LUMO+1	-0.15161
				HOMO -> LUMO+2	0.64328
				HOMO -> LUMO+3	0.12520
10	5.0114	247.41	f=0.0282	HOMO-6 -> LUMO	0.66144
				HOMO -> LUMO+2	-0.11549
				HOMO -> LUMO+3	-0.13245
11	5.1169	242.31	f=0.0000	HOMO-8 -> LUMO	0.60389
				HOMO-7 -> LUMO	0.34312
12	5.1530	240.61	f=0.0001	HOMO-8 -> LUMO	-0.32804
				HOMO-7 -> LUMO	0.60709
13	5.2856	234.57	f=0.1604	HOMO-6 -> LUMO	0.10171
				HOMO-2 -> LUMO+1	0.44310
				HOMO-1 -> LUMO+1	0.34872
				HOMO-1 -> LUMO+2	-0.11359

Table S3: TDDFT energies of singlet excitations for **3H** in its optimized ground state geometry

				HOMO-1 -> LUMO+3	-0.13494
				HOMO -> LUMO+3	0.32390
14	5.3910	229.98	f=0.0085	HOMO-2 -> LUMO+1	0.16796
				HOMO-1 -> LUMO+2	0.65885
15	5.5222	224.52	f=0.0000	HOMO-9 -> LUMO	0.69662
16	5.6605	219.03	f=0.1316	HOMO-10 -> LUMO	-0.23783
				HOMO-3 -> LUMO+2	-0.10267
				HOMO-2 -> LUMO+1	-0.25293
				HOMO-1 -> LUMO+1	0.12574
				HOMO-1 -> LUMO+3	0.40381
				HOMO -> LUMO+3	0.34369
				HOMO -> LUMO+4	-0.14471
17	5.7744	214.71	f=0.0924	HOMO-10 -> LUMO	-0.14481
				HOMO-4 -> LUMO+1	0.28872
				HOMO-1 -> LUMO+3	-0.26659
				HOMO -> LUMO+4	-0.27400
				HOMO -> LUMO+5	0.44848
18	5.8204	213.02	f=0.0398	HOMO-10 -> LUMO	0.63239
				HOMO -> LUMO+3	0.16603
19	5.9071	209.89	f=0.0831	HOMO-4 -> LUMO+1	0.15872
				HOMO-3 -> LUMO+1	0.14154
				HOMO-2 -> LUMO+1	0.22990
				HOMO-1 -> LUMO+3	0.37677
				HOMO -> LUMO+4	0.31490
				HOMO -> LUMO+5	0.35310
20	6.0099	206.30	f=0.0861	HOMO-3 -> LUMO+1	0.55756
				HOMO-2 -> LUMO+1	0.21674
				HOMO -> LUMO+4	-0.28410
				HOMO -> LUMO+5	-0.16792
21	6.0552	204.76	f=0.1322	HOMO-3 -> LUMO+1	0.26787
				HOMO-2 -> LUMO+1	-0.19374
				HOMO-2 -> LUMO+2	0.48037
				HOMO-1 -> LUMO+3	-0.13036
				HOMO-1 -> LUMO+5	0.13135
				HOMO -> LUMO+3	0.10340
				HOMO -> LUMO+4	0.23879
22	6.1169	202.69	f=0.0000	HOMO-4 -> LUMO	-0.37995
				HOMO-11 -> LUMO	0.57976
23	6.1299	202.26	f=0.3199	HOMO-3 -> LUMO+1	-0.27303
				HOMO-3 -> LUMO+2	-0.14157
				HOMO-2 -> LUMO+1	0.17433
				HOMO-2 -> LUMO+2	0.44235
				HOMO-1 -> LUMO+2	-0.10093
				HOMO-1 -> LUMO+3	0.17952

				HOMO -> LUMO+4	-0.31335
24	6.2149	199.49	f=0.0170	HOMO-4 -> LUMO+1	-0.29417
				HOMO-4 -> LUMO+3	0.18957
				HOMO-2 -> LUMO+3	-0.20044
				HOMO-2 -> LUMO+5	-0.10660
				HOMO-1 -> LUMO+4	-0.23149
				HOMO-1 -> LUMO+5	0.41870
				HOMO -> LUMO+4	-0.11835
				HOMO -> LUMO+5	0.21012
25	6.3426	195.48	f=0.0000	HOMO-12 -> LUMO	0.57903
				HOMO-11 -> LUMO	0.38486
26	6.3835	194.23	f=0.0006	HOMO -> LUMO+6	0.69608
27	6.4314	192.78	f=0.0298	HOMO-13 -> LUMO	0.19919
				HOMO-4 -> LUMO+1	0.42805
				HOMO-3 -> LUMO+2	-0.10710
				HOMO-2 -> LUMO+3	-0.29477
				HOMO-1 -> LUMO+4	-0.30872
				HOMO -> LUMO+5	-0.21794
28	6.5122	190.39	f=0.0861	HOMO-13 -> LUMO	0.17536
				HOMO-4 -> LUMO+1	0.14652
				HOMO-2 -> LUMO+3	-0.15396
				HOMO-1 -> LUMO+4	0.54384
				HOMO-1 -> LUMO+5	0.29842
29	6.5439	189.46	f=0.0286	HOMO-14 -> LUMO	-0.14557
				HOMO-13 -> LUMO	-0.37052
				HOMO-3 -> LUMO+2	0.39275
				HOMO-2 -> LUMO+2	0.10826
				HOMO-2 -> LUMO+3	-0.35850
				HOMO-1 -> LUMO+5	-0.10782
30	6.6373	186.80	f=0.1221	HOMO-14 -> LUMO	-0.19888
				HOMO-13 -> LUMO	-0.29783
				HOMO-4 -> LUMO+1	0.24041
				HOMO-4 -> LUMO+2	-0.10462
				HOMO-4 -> LUMO+3	0.15341
				HOMO-3 -> LUMO+2	0.10340
				HOMO-3 -> LUMO+3	0.11182
				HOMO-2 -> LUMO+3	0.38600
				HOMO-1 -> LUMO+5	0.23910
				HOMO -> LUMO+5	-0.12615

	Table S4: TDDFT	energies of single	t excitations for 4	H in its optimized	ground state geometry
--	-----------------	--------------------	----------------------------	--------------------	-----------------------

E	Excited States	Energy (eV)	Wavelength (nm)	Oscillator Strength	Transition	Transition Contribution
-	1	2.4167	513.03	f=1.0069	HOMO-1 -> LUMO	-0.22713

				HOMO -> LUMO	0.67122
2	2.8112	441.04	f=0.5068	HOMO-4 -> LUMO	-0.17628
				HOMO-1 -> LUMO	0.64453
				HOMO -> LUMO	0.22177
3	3.6105	343.40	f=0.0656	HOMO-5 -> LUMO	0.22486
				HOMO-4 -> LUMO	0.63572
				HOMO-1 -> LUMO	0.13778
4	3.8219	324.41	f=0.0749	HOMO-5 -> LUMO	0.66231
				HOMO-4 -> LUMO	-0.20084
5	4.0510	306.06	f=0.0473	HOMO-6 -> LUMO	-0.13029
				HOMO-1 -> LUMO+3	0.11625
				HOMO -> LUMO+1	0.66950
6	4.1711	297.25	f=0.0013	HOMO-8 -> LUMO	0.70171
7	4.3327	286.16	f=0.0052	HOMO-6 -> LUMO	0.67531
				HOMO -> LUMO+1	0.10706
8	4.5188	274.37	f=0.0343	HOMO-4 -> LUMO+1	-0.12937
				HOMO-1 -> LUMO+1	0.38938
				HOMO -> LUMO+2	0.47530
				HOMO -> LUMO+3	-0.25887
9	4.5854	270.39	f=0.1621	HOMO-1 -> LUMO+1	-0.38529
				HOMO-1 -> LUMO+2	0.10404
				HOMO -> LUMO+2	0.48835
				HOMO -> LUMO+3	0.25733
10	4.8647	254.86	f=0.0458	HOMO-7 -> LUMO	0.62945
				HOMO-4 -> LUMO+1	-0.13088
				HOMO-1 -> LUMO+3	0.10120
				HOMO -> LUMO+3	-0.18531
11	4.9988	248.03	f=0.0348	HOMO-7 -> LUMO	0.25250
				HOMO-4 -> LUMO+1	0.44418
				HOMO-1 -> LUMO+1	0.34640
				HOMO-1 -> LUMO+3	-0.17141
				HOMO -> LUMO+3	0.24012
12	5.2622	235.61	f=0.0428	HOMO-4 -> LUMO+1	0.13100
				HOMO-1 -> LUMO+2	0.60472
				HOMO-1 -> LUMO+3	-0.10764
				HOMO -> LUMO+3	-0.27063
13	5.3663	231.04	f=0.1153	HOMO-4 -> LUMO+1	-0.22543
				HOMO-1 -> LUMO+1	0.14158
				HOMO-1 -> LUMO+2	0.30716
				HOMO-1 -> LUMO+3	0.38778
				HOMO -> LUMO+2	-0.10346
				HOMO -> LUMO+3	0.36872
14	5.4078	229.27	f=0.0000	HOMO-9 -> LUMO	0.69764
15	5.6534	219.31	f=0.0356	HOMO-6 -> LUMO+1	0.25289

				HOMO -> LUMO+4	0.47704
				HOMO -> LUMO+5	0.39768
16	5.6890	217.94	f=0.0132	HOMO-10 -> LUMO	0.64474
				HOMO -> LUMO+4	-0.16993
				HOMO -> LUMO+5	0.11883
17	5.7033	217.39	f=0.0001	HOMO-12 -> LUMO	0.67925
				HOMO-11 -> LUMO	0.13873
18	5.7965	213.89	f=0.1140	HOMO-10 -> LUMO	-0.19530
				HOMO-4 -> LUMO+1	-0.21710
				HOMO-1 -> LUMO+3	-0.36025
				HOMO -> LUMO+4	-0.27238
				HOMO -> LUMO+5	0.41465
19	5.7972	213.87	f=0.0000	HOMO-12 -> LUMO	-0.13889
				HOMO-11 -> LUMO	0.68569
20	5.8875	210.59	f=0.0781	HOMO-4 -> LUMO+1	-0.14494
				HOMO-4 -> LUMO+2	0.61773
				HOMO-1 -> LUMO+3	-0.11793
				HOMO -> LUMO+4	0.10193
				HOMO -> LUMO+5	-0.14815
21	5.9716	207.62	f=0.4423	HOMO-6 -> LUMO+1	-0.17505
				HOMO-4 -> LUMO+1	0.29581
				HOMO-4 -> LUMO+2	0.30265
				HOMO-1 -> LUMO+3	0.26015
				HOMO-1 -> LUMO+4	0.12436
				HOMO-1 -> LUMO+5	0.13103
				HOMO -> LUMO+4	-0.20235
				HOMO -> LUMO+5	0.28207
22	6.0534	204.82	f=0.1850	HOMO-6 -> LUMO+1	-0.28414
				HOMO-6 -> LUMO+3	0.10463
				HOMO-5 -> LUMO+1	0.34660
				HOMO-4 -> LUMO+1	-0.12080
				HOMO-4 -> LUMO+3	0.15574
				HOMO-1 -> LUMO+3	-0.19925
					0.29757
					0.18384
22	C 0C70	204.22	f-0.0024		0.24453
23	0.00/8	204.33	1=0.0024		0.21453
					0.000/9
					-0.1/010
24	6 1 1 1 7	202.05	f-0.0001		-0.14208
24	0.111/	202.80	1-0.0001		0.09358
25	6 2710	101 59	f-0 1691		0.10040
25	0.5/19	194.30	1-0.1081		-U.14949 0.27/59
					0.27430

				HOMO-4 -> LUMO+3	0.56640
				HOMO-1 -> LUMO+4	0.16122
				HOMO -> LUMO+4	-0.13785
26	6.4479	192.28	f=0.0419	HOMO-14 -> LUMO	0.15413
				HOMO-7 -> LUMO+1	0.11179
				HOMO-4 -> LUMO+3	-0.11606
				HOMO-1 -> LUMO+4	0.44792
				HOMO-1 -> LUMO+5	-0.44767
27	6.4845	191.20	f=0.0083	HOMO-14 -> LUMO	-0.19476
				HOMO-6 -> LUMO+1	0.36979
				HOMO-6 -> LUMO+3	0.10639
				HOMO-5 -> LUMO+2	0.13797
				HOMO-4 -> LUMO+3	-0.28782
				HOMO-4 -> LUMO+5	-0.10994
				HOMO-1 -> LUMO+4	0.24086
				HOMO-1 -> LUMO+5	0.31311
				HOMO -> LUMO+5	-0.10802
28	6.5280	189.93	f=0.0153	HOMO-1 -> LUMO+7	0.12083
				HOMO -> LUMO+7	0.67487
29	6.5463	189.40	f=0.1131	HOMO-16 -> LUMO	-0.16666
				HOMO-14 -> LUMO	0.43174
				HOMO-7 -> LUMO+1	-0.11183
				HOMO-6 -> LUMO+1	0.16922
				HOMO-5 -> LUMO+2	-0.38681
				HOMO-1 -> LUMO+5	0.22109
30	6.5804	188.41	f=0.0000	HOMO-13 -> LUMO	0.66921
				HOMO-9 -> LUMO+1	0.13358
				HOMO-8 -> LUMO+1	0.13804

Table S1. TDDFT Energies of **1H** along the torsional \angle CNNC of the S0 trans-cis isomerization.

∠ CNNC	S0	S1	S2	S3	S4	T1	Т2	Т3
12.3	0.47336	2.64936	3.11046	3.60936	3.91156	1.98726	2.44966	2.94986
20	0.47877	2.64167	3.06787	3.58287	3.89217	1.91987	2.41717	2.93607
40	0.58447	2.63447	2.95727	3.55137	3.86907	1.70007	2.37257	2.93897
60	0.83732	2.66882	2.90852	3.62192	3.90832	1.46972	2.41752	3.02992
80	1.23937	2.70677	2.95147	3.83237	4.00747	1.62966	2.54197	3.22277
100	1.33568	2.74558	3.02348	3.88178	4.03618	1.63464	2.57498	3.18928
120	0.78869	2.54579	2.90579	3.54769	3.82659	1.29619	2.34559	2.94419
140	0.36032	2.36032	2.83292	3.33502	3.72392	1.37382	2.20442	2.77312
160	0.09215	2.24705	2.78155	3.20705	3.69465	1.37225	2.12835	2.64265
180	0	2.20945	2.77095	3.19225	3.80225	1.37275	2.12035	2.59945

∠ CNN	S0	S1	S2	S3	S4	T1	Т2	Т3
120.6	0	2.20945	2.77095	3.19225	3.80225	1.37275	2.12035	2.59945
130.6	0.11087	2.36287	2.94047	3.39237	3.65687	1.57657	2.30387	2.74617
140.6	0.38129	2.67169	3.26009	3.51789	3.73029	1.92359	2.63639	2.82469
150.6	0.72183	3.04533	3.49823	3.64313	4.12013	2.32333	2.85653	3.03113
160.6	1.05076	3.39526	3.54186	4.00116	4.48176	2.69366	2.94766	3.39926
170.6	1.29692	3.60842	3.65572	4.27132	4.74722	2.96542	3.04822	3.67412
183.5	1.40515	3.66325	3.77585	4.40205	4.85435	3.05105	3.14095	3.80385
193.5	1.29706	3.59656	3.71226	4.29796	4.71566	2.88466	3.12256	3.70536
203.5	1.07116	3.38996	3.65126	4.06526	4.45246	2.67056	3.00686	3.47726
213.5	0.79837	3.08137	3.58397	3.81517	4.12557	2.40077	2.85797	3.21747
223.5	0.56758	2.78798	3.34608	3.79988	3.84068	2.16888	2.65368	3.05608
233.5	0.47336	2.64936	3.11046	3.60936	3.91156	1.98726	2.44966	2.94986

Table S2. TDDFT Energies of **1H** along the inversion \angle ^{Nap}CNN of the S₀ trans-cis isomerization.

∠ CNNC	S0	S1	S2	S3	S4	T1	Т2	Т3
11.8	0.67467	3.16977	4.06897	4.39837	4.51427	2.39181	3.30987	3.48557
20	0.69312	3.03172	4.01362	4.36192	4.46112	2.24287	3.30442	3.47522
40	0.86911	2.71321	3.95881	4.34481	4.42241	1.88258	3.37101	3.50181
60	1.22682	2.41722	4.01332	4.42912	4.53082	1.56177	3.51652	3.60432
80	1.7172	2.0903	4.1225	4.651	4.8184	1.37925	3.6814	3.7636
100	1.74982	1.96852	4.08212	4.61012	4.81402	1.30254	3.65932	3.68782
120	1.08176	2.20616	3.84076	4.21566	4.37806	1.3427	3.23496	3.44026
140	0.51103	2.34923	3.57953	3.84943	4.12303	1.51775	2.79283	3.15343
160	0.13265	2.52965	3.33685	3.57065	4.07035	1.77211	2.37855	2.92265
180	0	2.6648	3.1557	3.478	4.1519	1.94018	1.9787	2.8358

Table S3. TDDFT Energies of **3H** along the torsional \angle CNNC of the S₀ trans-cis isomerization.

∠ CNN	S0	S1	S2	S3	S4	T1	Т2	Т3
115.17371	0	2.6648	3.1557	3.478	4.1519	1.9416	1.9787	2.8358
125.17371	0.14269	2.42889	3.32029	3.62729	4.12499	1.74929	2.13799	2.98049
135.17371	0.49998	2.37508	3.67668	3.98258	4.07878	1.72888	2.49698	3.33448
145.17371	0.96895	2.44535	4.12725	4.17065	4.43895	1.81975	2.95405	3.79395
155.17371	1.27928	2.75398	4.45708	4.65408	4.91938	2.04588	3.75058	3.79418
179.6	1.68555	2.82215	4.78615	4.86655	5.04095	2.27335	3.98365	4.23285
195.54038	1.5187	2.902	4.6975	4.8074	5.047	2.2785	3.8932	4.0953
205.54038	1.2774	2.9665	4.5466	4.684	5.0346	2.2392	3.7778	3.8595
215.54038	1.00742	3.01862	4.34882	4.52972	4.86582	2.19622	3.57882	3.66012
225.54038	0.78191	3.03211	4.16921	4.40691	4.49751	2.12341	3.39401	3.49491
235.54038	0.67467	3.16977	4.06897	4.39837	4.51427	2.23787	3.30987	3.48557

Table S4. TDDFT Energies of **3H** along the inversion \angle ^{Nap}CNN of the S₀ trans-cis isomerization.

Table S5. TDDFT Energies of **4H** along the torsional \angle CNNC of the S₀ trans-cis isomerization.

∠ CNNC	S0	S1	S2	S3	S4	T1	Т2	Т3
11.2	0.42431	3.00181	3.41441	3.95811	4.30061	1.88781	2.84001	3.28231
20	0.42997	2.94697	3.30837	3.95137	4.25287	1.80157	2.77837	3.26937
40	0.50545	2.80645	3.16135	3.94785	4.19825	1.63645	2.68705	3.19635
60	0.66841	2.62351	3.07571	3.97551	4.23351	1.49991	2.64431	3.06291
80	0.88958	2.41118	3.03058	3.96658	4.42238	1.54028	2.67258	2.98808
100	0.97107	2.51367	3.07167	3.98207	4.44397	1.61407	2.67137	3.01867
120	0.60472	2.52642	2.99712	3.91182	4.15212	1.40662	2.50622	2.95432
140	0.2896	2.4855	2.9084	3.7768	3.9811	1.3141	2.3753	2.88
160	0.07556	2.43986	2.84126	3.65636	3.86706	1.27396	2.28596	2.81496
180	0	2.4167	2.8112	3.6105	3.8219	1.2546	2.2493	2.7828

Table S6. TDDFT Energies of **4H** along the inversion \angle ^{Nap}CNN of the S₀ trans-cis isomerization.

∠ CNN	S0	S1	S2	S3	S4	T1	Т2	Т3
120.6	о	2.4167	2.8112	3.6105	3.8219	1.2546	2.2493	2.7828
130.6	0.09197	2.59837	3.00167	3.78727	3.89767	1.47097	2.42527	2.93937
140.6	0.35419	2.93549	3.34569	3.76529	4.11639	1.83939	2.75439	3.12589
150.6	0.68602	3.32252	3.74032	3.74852	4.49692	2.25002	3.13352	3.15922
160.6	1.01004	3.68434	3.79984	4.10934	4.85594	2.62934	3.25684	3.48794
184.4	1.35323	3.92563	4.06293	4.49903	5.22913	3.01233	3.42703	3.84543
194.4	1.25033	3.87923	3.99283	4.38993	5.10633	2.89273	3.40313	3.72703
204.4	1.02135	3.67925	3.92285	4.13735	4.84385	2.63275	3.34195	3.47595
214.4	0.74613	3.39493	3.81213	3.94783	4.51923	2.33403	3.17043	3.32133
224.4	0.51038	3.14378	3.56798	4.01308	4.26668	2.07018	2.94508	3.38358
234.4	0.42431	3.00181	3.41441	3.95811	4.30061	1.88781	2.84001	3.28231

Spin orbit coupling tables

Table S7. Spin-orbit coupling constants between $S_0 - S_6$ and $T_1 - T_6$ states of azo **1H** in its optimized ground-state geometry B3LYP/6-311G(d.p)/PCM(ACN)

	S0	S1	S2	S3	S4	S5	S6
T1	0.08927	0.27182	0.29764	0.23561	0.13338	5.54583	0.1481
T2	0.19227	0.25176	0.27071	0.23934	0.1181	0.90985	0.22675
Т3	0.41134	0.02164	0.1499	0.04221	0.20313	0.55793	0.23615
T4	0.16993	0.37845	0.02745	0.31156	0.06253	6.74246	0.03729
T5	0.20246	0.11667	0.00657	0.0816	0.05504	3.06563	0.00942
Т6	31.74461	2.70851	4.16059	1.04862	3.34948	0.6222	5.5808

Table S8. Spin-orbit coupling constants between $S_0 - S_6$ and $T_1 - T_6$ states of azo **3H** in its optimized ground-state geometry B3LYP/6-311G(d.p)/PCM(ACN)

	S0	S1	S2	S3	S4	S5	S6
T1	0.13733	0.21115	0.27609	0.14462	0.22818	1.96105	0.01961
Т2	0.08791	0.11611	0.2665	0.26713	0.15259	4.51259	0.10094
Т3	0.31331	0.42457	0.10183	0.03538	0.1556	7.28802	0.06723
T4	0.39133	0.15303	0.11821	0.06905	0.14801	0.94904	0.06675
T5	0.19754	0.11134	0.02578	0.00322	0.02498	3.0266	0.0865
Т6	31.3139	2.16921	0.79127	4.51323	5.95197	0.41317	4.45763

Table S9. Spin-orbit coupling constants between $S_0 - S_6$ and $T_1 - T_6$ states of azo **4H** in its optimized ground-state geometry B3LYP/6-311G(d.p)/PCM(ACN)

	S0	S1	S2	S3	S4	S5	S6
T1	0.13989	0.10394	0.20334	0.01297	0.20859	0.2405	4.63169
Т2	0.07856	0.00127	0.29948	0.2764	0.08903	0.2134	6.78772
Т3	0.14561	0.43277	0.17533	0.16238	0.03745	0.18807	4.59596
T4	0.27077	0.08211	0.02397	0.06977	0.01856	0.37031	3.0215
T5	0.52722	0.1281	0.12364	0.07922	0.06896	0.01973	0.51262
T6	29.59469	0.60486	2.38889	8.24098	2.86528	0.30722	0.04398

Coordinates

Table S10. nap-azoH-ph: 1 with protonation of N on the phenyl side 1 1 C -5.52866329 0.01669600 0.00000877 C -4.61383535 -1.01826136 -0.00000666 C -3.23155250 -0.74686956 -0.00000950 C -2.79636447 0.62002180 0.00000434 C -3.76168256 1.66323174 0.00002011 C -5.10300091 1.36348157 0.00002228 H -2.59267499 -2.81827662 -0.00003476 н -6.58932214 -0.20491733 0.00001074 н -4.95177751 -2.04778067 -0.00001663 C -2.25240076 -1.78941937 -0.00002503 C -1.41833227 0.88817799 0.00000310 н -3.42263407 2.69261707 0.00003074 н -5.83938754 2.15757193 0.00003446 C -0.48192508 -0.15056201 -0.00001338 C -0.91786496 -1.51547827 -0.00002750 н -1.05493676 1.90847559 0.00001408 н -0.21394998 -2.33815194 -0.00003965 N 0.81588920 0.28701147 -0.00001395 C 3.13007868 -0.15017766 0.00000782 C 4.08764767 -1.17010268 0.00003557 C 3.49646300 1.20053453 -0.00002463 C 5.43464596 -0.82955097 0.00003077 Н 3.78138887 -2.21004735 0.00005993 C 4.84549720 1.52034006 -0.00002906 H 2.73512888 1.96792363 -0.00004606 C 5.81488177 0.51180826 -0.00000152 Н 6.18413790 -1.61069333 0.00005196 н 5.14634947 2.56055791 -0.00005421 Н 6.86559839 0.77480926 -0.00000534 N 1.77396046 -0.53933908 0.00001169 Н 1.60157936 -1.54901535 0.00003756

1 1 C 5.53580824 0.05176483 0.00000065 C 4.59827256 1.06222805 0.00000127 C 3.21797164 0.76027189 0.00000058 C 2.81215120 -0.61430942 -0.00000073 C 3.80150953 -1.63326808 -0.00000139 C 5.13586181 -1.30394055 -0.00000070 H 2.53276544 2.81529813 0.00000225 H 6.59161507 0.29550425 0.00000127 H 4.91034320 2.10022630 0.00000228 C 2.21872546 1.77803583 0.00000122 C 1.43433347 -0.91687536 -0.00000128 Н 3.48797494 -2.67098101 -0.00000244 Н 5.88794712 -2.08359543 -0.00000121 C 0.50352652 0.10666135 -0.00000058 C 0.88699334 1.47291226 0.00000067 H 1.11430866 -1.95322154 -0.00000214 H 0.12811608 2.24209302 0.00000126 C -3.11051823 0.14381732 0.00000023 C -4.05050989 1.19502732 -0.00000188 C -3.54911709 -1.19994031 0.00000220 C -5.40739724 0.91201509 -0.00000174 Н -3.68281573 2.21302345 -0.00000351 C -4.90476465 -1.46598850 0.00000222 H -2.85573833 -2.03221362 0.00000373 C -5.83421425 -0.41554715 0.00000031 Н -6.12955347 1.71825668 -0.00000327 н -5.25007761 -2.49194965 0.00000367 н -6.89365716 -0.64151079 0.00000034 N -1.79761348 0.57145593 -0.00000008 N -0.85086830 -0.26239774 -0.00000090 н -1.03365048 -1.27152457 -0.00000164 Table S12. nap-azoH-phOMe: 3 with protonation of N on the phenyl side

1 1 C -6.39375802 -0.26626120 -0.00018821 C -5.54483495 0.82210590 -0.00009006 C -4.14685709 0.63667145 -0.00002270 C -3.62606575 -0.69896647 -0.00004647 C -4.52543750 -1.79904644 -0.00014526 C -5.88297429 -1.58359286 -0.00021833 H -3.63631152 2.74244790 0.00008022 н -7.46624722 -0.11167834 -0.00024677 H -5.94466778 1.82941351 -0.00006752 C -3.23437402 1.73604644 0.00006617 C -2.23183572 -0.88097587 0.00004130 H -4.12365084 -2.80563091 -0.00016060 H -6.56755878 -2.42298933 -0.00029689 C -1.36240389 0.21083255 0.00013191 C -1.88428524 1.54439398 0.00013878 н -1.80796128 -1.87774212 0.00003783 н -1.23554108 2.41174599 0.00019870 C 2.23551353 0.47806879 0.00019937 C 3.12105223 1.56926870 -0.00018544 C 2.72051619 -0.83566834 0.00049876 C 4.47971135 1.34306596 -0.00030396 н 2.74099510 2.58451727 -0.00041661 C 4.08414365 -1.06142223 0.00039255 H 2.02724678 -1.66530405 0.00085681 C 4.97895913 0.02673596 -0.00006695 н 5.18259197 2.16572965 -0.00061439 н 4.44889135 -2.07828942 0.00075151 0 6.31492543 -0.09021151 -0.00013391 C 6.91267278 -1.39694950 -0.00038618 H 7.98538513 -1.22239509 -0.00114703 H 6.63028348 -1.95375266 0.89601451 H 6.62904150 -1.95397745 -0.89624297 N 0.86334170 0.75246154 0.00025435 H 0.61254962 1.74538391 0.00016464 N -0.03375658 -0.14269408 0.00021254

1 1 C -6.41433418 -0.15675248 0.00007331 C -5.52806405 0.89757253 0.00089254 C -4.13286982 0.66426810 0.00055654 C -3.65701583 -0.68665493 -0.00062544 C -4.59550813 -1.75247042 -0.00144691 C -5.94490877 -1.49044427 -0.00110367 н -3.54931331 2.74975103 0.00233001 н -7.48117261 0.03331371 0.00033382 н -5.88984761 1.91951402 0.00181624 C -3.18569660 1.72862321 0.00139188 C -2.26355415 -0.92049628 -0.00091462 н -4.23143198 -2.77370414 -0.00233036 Н -6.65630699 -2.30771331 -0.00172965 C -1.38436419 0.14498653 -0.00009757 C -1.83954664 1.48859927 0.00110250 н -1.89517454 -1.94074047 -0.00179149 н -1.12115282 2.29576000 0.00177457 N 0.88985292 0.74932408 -0.00010704 C 2.21265555 0.42906480 0.00034670 3.08703140 1.54828242 -0.00157471 С C 2.76806253 -0.87691866 0.00255395 C 4.44674802 1.37710642 -0.00194703 H 2.64857321 2.53788108 -0.00295534 C 4.13058642 -1.05261409 0.00231707 H 2.14437214 -1.76280359 0.00471996 C 4.98972757 0.07399471 -0.00020949 н 5.12484303 2.22021319 -0.00358655 н 4.53673344 -2.05345516 0.00407253 0 6.31646274 -0.00099564 -0.00112863 C 6.97335327 -1.28495910 0.00016460 н 8.03587514 -1.05944122 -0.00102122 H 6.71330927 -1.84737333 0.89849215 H 6.71184271 -1.84995551 -0.89612922 N -0.00863007 -0.14902742 -0.00034332 н 0.23477478 -1.14248435 -0.00069191

Table S13. nap-Hazo-phOMe: also called **3H**

Table S14. nap-azoH-phNMe2: **4** with protonation of N on the phenyl side 1 1

C 6.81970565 -0.14540945 0.00002462 C 5.93418277 0.91158171 -0.00002515 C 4.54114778 0.67903358 -0.00002393 C 4.06318797 -0.67163008 0.00002672 C 5.00081910 -1.73936907 0.00007913 C 6.35058377 -1.47881974 0.00007908 H 3.95737064 2.76486585 -0.00009764 H 7.88662594 0.04427206 0.00002263 H 6.29843955 1.93259221 -0.00006592 C 3.59218590 1.74420599 -0.00006797 C 2.67333200 -0.90038548 0.00002316 H 4.63430944 -2.75964422 0.00011882 H 7.06201835 -2.29594950 0.00012021 C 1.76648526 0.15705153 -0.00002652 C 2.24797524 1.50499266 -0.00006658 H 2.28619141 -1.91211587 0.00005613 н 1.57335634 2.35263151 -0.00009100 N 0.44270244 -0.23508548 -0.00004398 N -0.47301646 0.65057945 -0.00003622 C -1.82847408 0.37250096 -0.00001903 C -2.73032868 1.45381739 0.00003174 C -2.31893251 -0.94803840 -0.00005125 C -4.08497293 1.23058118 0.00004749 H -2.35685097 2.47199698 0.00004998 C -3.67067264 -1.17669772 -0.00003926 H -1.62322841 -1.77586375 -0.00009635 C -4.60891329 -0.09628732 0.00002116 н -4.75029246 2.08043498 0.00006979 H -4.02136206 -2.19785162 -0.00007265 N -5.94100371 -0.32676837 0.00003577 C -6.88951577 0.78827203 0.00014276 H -7.90008461 0.38996703 0.00032394 н -6.76499613 1.41279127 0.88915208 н -6.76527792 1.41271914 -0.88896229 C -6.46571724 -1.69392886 -0.00011533 н -7.55118260 -1.65242895 0.00006855 H -6.14286456 -2.24202495 -0.88955061 H -6.14257441 -2.24234684 0.88901670 н -0.23284333 1.64605007 0.00000355

1 1 C 6.83310950 -0.04129912 -0.00018626 C 5.91360338 0.98300584 -0.00011049 C 4.52487106 0.70603417 -0.00003862 C 4.08954215 -0.65790072 -0.00004484 C 5.06270363 -1.69242927 -0.00012112 C 6.40354214 -1.38884939 -0.00018919 H 3.87368411 2.77069023 0.00004687 н 7.89364939 0.18167742 -0.00023991 H 6.24223235 2.01640214 -0.00010204 C 3.54435559 1.73770087 0.00004445 C 2.70235232 -0.93541167 0.00002876 Н 4.73177584 -2.72513735 -0.00011613 H 7.13937819 -2.18448568 -0.00024284 C 1.78711812 0.09790302 0.00011999 C 2.20561309 1.45372764 0.00012098 H 2.36773330 -1.96739237 0.00000548 H 1.46317415 2.23885510 0.00019024 N 0.41898452 -0.23103895 0.00020239 N -0.50458069 0.66179273 0.00016684 C -1.80544896 0.32805352 0.00021171 C -2.71039505 1.43021567 0.00003806 C -2.35801618 -0.99057415 0.00038671 C -4.06237459 1.24999087 -0.00004762 н -2.28823219 2.42734924 -0.00003253 C -3.70712669 -1.18109978 0.00026561 H -1.72398998 -1.86914720 0.00064763 C -4.62057313 -0.06899006 -0.00006069 н -4.70857136 2.11441213 -0.00016369 H -4.09002106 -2.19044237 0.00048273 N -5.94662695 -0.26649564 -0.00018989 C -6.87366405 0.87214252 -0.00026532 H -7.89142706 0.49453704 -0.00047497 н -6.73177735 1.48943455 0.88963151 н -6.73145487 1.48958085 -0.89001117 C -6.51363133 -1.62159260 -0.00022324 н -7.59660368 -1.54559324 -0.00096567 H -6.20509432 -2.17432613 -0.89030467 Н -6.20626968 -2.17387619 0.89055354 H 0.19388994 -1.22610935 0.00026698

Table S15. nap-Hazo-phNMe2: also called **4H**

Table S16. nap-azo-phNMe2H: **4** with protonation of N on the dimethylamine functionality

C 6.83667700 -0.09204363 0.01544263 C 5.93894039 0.95215049 -0.00761927 C 4.54495140 0.70544688 -0.00975184 C 4.08309357 -0.64976692 0.01126499 C 5.03362970 -1.70434063 0.03460649 C 6.38120303 -1.43047978 0.03689480 H 3.94065231 2.78460439 -0.04957860 н 7.90167272 0.10952739 0.01726674 H 6.29084114 1.97781389 -0.02416975 C 3.58499388 1.75994254 -0.03232893 C 2.68930677 -0.89361145 0.00797749 H 4.67896930 -2.72912668 0.05089643 H 7.10084953 -2.24058616 0.05517358 C 1.78358992 0.15038681 -0.01179686 C 2.24294359 1.49936993 -0.03267438 H 2.31403314 -1.91042648 0.02289458 н 1.51411492 2.29773962 -0.04943926 N 0.42527772 -0.22646679 -0.01049961 N -0.39997825 0.72047297 -0.00051112 C -1.76158745 0.31982718 -0.00824520 C -2.69755148 1.35433763 0.09415846 C -2.19987007 -1.00678585 -0.11754649 C -4.05998768 1.08007755 0.09654489 H -2.34182264 2.37351174 0.17448519 C -3.55783038 -1.28780650 -0.12109115 H -1.47218856 -1.80168105 -0.19996896 C -4.47126891 -0.24246308 -0.01301863 н -4.77039733 1.89202401 0.18246775 Н -3.89919811 -2.31316735 -0.20873888 N -5.91899522 -0.57252603 -0.01917464 C -6.64870133 0.00012438 -1.21125293 H -7.67050514 -0.37190817 -1.19086591 H -6.63968775 1.08426363 -1.14050274 н -6.13833200 -0.32797963 -2.11314320 C -6.60440200 -0.22288841 1.28042656 н -7.62639271 -0.59187190 1.23268324 H -6.06074017 -0.70008036 2.09144272 H -6.59647493 0.85703483 1.39914803 н -5.97830266 -1.58891557 -0.11069730