Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Figure S1 (a) the configraion of composite target; (b)-(c) the SEM image of f Cu/Cu-doped SiO₂/W device before DC sweep.

Figure 2 SEM image of Cu-doped SiO_2 after $FeCl_3$ exfoliation; (b) the EDX spectrum in the beginning of sputtering; (c) EDX spectrum after 100s.

(a)	(b)	(c)	(d)	(e)
С 1µт	8	8	8	3
1µm	S	6	5	
(f)	(g)	(h)	(i)	(j)
		12		
(1.)				(2)
(K)	(1)	(n)	(0)	(Þ)

Figure S3 SEM images of Cu/Cu-doped SiO_2/W device milled by FIB method (top SE, bottom BSE).

Figure S4 SEM images of Cu/Cu-doped SiO_2/W device milled by FIB method (top SE, bottom BSE).

Figure S5 SEM images of Cu/Cu-doped SiO₂/W device milled by FIB method (top SE, bottom BSE).

Figure S6 SEM images of Cu/Cu-doped SiO₂/W device milled by FIB method (top SE, bottom BSE).

(а) 1µт	(b)	(c)	(d)	(e)	(f)	(g)
(h)	(i)	(j)	(k)	(I)	(m)	(n)
(0)	(p)	(q)	(r)	(s)	(t)	(u)

Figure S7 SEM images of Cu/Cu-doped SiO₂/W device milled by FIB method in SE mode

Figure S8 Maximal temperature within the device caused by Jaule Heat calculated via COMSOL as a function of the thickness of WO₃ layer for different CuO thicknesses for (a) SET state, (b) RESET state.

Figure S9 3D reconstruction of defects.

	Copper	SiO ₂	Tungsten	WO ₃	CuO
Density	8940	2203	17800	7160	6310
(kg/m^3)					
Heat capacity	385	703	132	315	532
(J/(kgK))					
Relative	-1e6	3.75	-1e6	10.5	18.1
permittivity					
Electrical	1.68e-8	1e-14	5.6e-8	2	1
conductivity σ	*(1+0.00386*(T-		*(1+0.0045*(T-	$ern(\overline{eV})$	$ev n \left(\frac{eV}{eV} \right)$
(S/m)	T0))		T0))	$exp(\sqrt{kT})$	$exp(\sqrt{kT})$
Thermal	$\kappa = \sigma \cdot L \cdot T$	1.38	$\kappa = \sigma \cdot L \cdot T$	1.28	18
conductivity κ					
(W/(m·K))					

Table S1: The properties of materials used for COMSOL simulation.