Predicting Two-Dimensional Semiconductors Using Conductivity Effective Mass -Supplementary Information

Figure S1 The effective mass distribution in the three crystallographic directions for a sample of materials shown in Figure 5-b of the main text. 186 materials were selected for display using an interval sampling method for the 904 materials with conductivity effective mass less than 2000. 0-100 are displayed in the top panel and 100-186 are displayed in the bottom panel. Please not the large difference in the y axis for the top and bottom plots.

Figure S2 The effective mass distributions in the three crystallographic directions for a sample of materials shown in Figure 5-d of the main text. 194 materials were selected for display using an interval sampling method for the 867 materials with conductivity effective mass less than 2000. 0-100 are displayed in the top panel and 100-194 are displayed in the bottom panel. Please not the large difference in the y axis for the top and bottom plots.

When performing structural optimization and static calculations for a thousand candidate materials of each type p and n, we found that including the spin polarization of electrons made convergence difficult for a significant portion of the materials and so were omitted. For the choice of algorithms, Fast, Conjugate and Normal algorithms were employed sequentially to converge the structure. However, some materials still failed to reach the convergence criteria, and the convergence of the energy of p- and n-type materials at the level of PBE functional as well as the level of PBE-vdW functional calculation, respectively, is shown in the Figures S3 to S6.

Figure S3 Diagrams depicting the change in energy (dE) during the relaxation of the p-type materials that failed to converge at the PBE level. The horizontal axis of the graph depicts the number of calculation steps and the colours represent the algorithms used during the calculation. The title of each graph is the Materials Project ID number. On the right side, the structure of the slab configuration is shown.

Figure S4 Diagrams depicting the change in energy (dE) during the relaxation of the n-type materials that failed to converge at the PBE level. The horizontal axis of the graph depicts the number of calculation steps and the colours represent the algorithms used during the calculation. The title of each graph is the Materials Project ID number. On the right side, the structure of the slab configuration is shown.

Figure S5 Diagrams depicting the change in energy (dE) during the relaxation of the p-type materials that failed to converge at the PBE+vdW level. The horizontal axis of the graph depicts the number of calculation steps and the colours represent the algorithms used during the calculation. The title of each graph is the Materials Project ID number. On the right side, the structure of the slab configuration is shown.

Figure S6 Diagrams depicting the change in energy (dE) during the relaxation of the n-type materials that failed to converge at the PBE+vdW level. The horizontal axis of the graph depicts the number of calculation steps and the colours represent the algorithms used during the calculation. The title of each graph is the Materials Project ID number. On the right side, the structure of the slab configuration is shown.

From the convergence process of the above materials, we can find that the energy change of most of the materials is haphazard, and the difference between the energy obtained from adjacent steps in the convergence process of some structures reaches outlandish extremes such as for mp-28804, mp-29745, mp-27595, mp-685478. There are some materials that have a gradual decrease in energy change during convergence, such as mp-560322, mp-27774, mp-554523, for which it is possible that they may converge eventually given enough calculation steps. However, some materials have been in a state of energy oscillation during the calculation

process and will likely never converge such as: mp-760255, mp-704459, mp-649616, mp-29745, mp-22869, mp-27774. Overall the cases of nonconvergence represent a very small minority of the data represented in this work.

Figure S7: Interval distribution of conductivity effective mass standard deviation for (a) p-type and (b) n-type materials in Figure 5-d and -b of the main text.

Figure S8: The schematic drawing of unit cell of the material with negative exfoliation. Left is mp-28577 with the chemical formula $RbBrF_4$, and the right is mp-556546, with the chemical formula K_2NiF_4 .

Figure S9 The atomic structure of a) MoSe₂ b) WSe₂ c) MoS₂ and d) WS₂.

MPID	Formula	Standard deviation	E _f (eV/ Å ²)
		of effective mass	
mp-556546	K2NiF4	1000	0.004
mp-28479	Sc ₂ CCl ₂	37.377	0.011
mp-567441	HfIN	164.028	0.011
mp-29966	NOF	7.637	0.008
mp-505727	NClO	45.887	0.007
mp-541911	HfNCl	47.249	0.016
mp-28233	MnCl ₂	6.411	0.02
mp-552120	YClO	304.938	0.015
mp-27850	TiNCl	1000	0.015
mp-568592	ZrNCl	81.757	0.017
mp-546279	ScBrO	1000	0.014
mp-754031	YBrO	85.648	0.016
mp-27849	TiBrN	1000	0.016
mp-541912	ZrBrN	60.952	0.018
mp-30031	CaI ₂	64.214	0.013
mp-643265	ReF ₇	9.522	0.009
mp-568346	HfBrN	1000	0.015
mp-558928	KrF ₂	8.825	0.011
mp-28306	MnBr ₂	286.679	0.022
mp-23052	ZrIN	1000	0.017
mp-28257	SOF ₂	9.03	0.007
mp-23184	BCl ₃	5.267	0.009
mp-28013	MnI ₂	84.792	0.024
mp-22987	BiIO	11.906	0.02
mp-554108	LiRe(OF ₂) ₂	309.02	0.014
mp-14653	AgSb ₂ F ₁₂	104.41	0.013
mp-23072	BiBrO	6.077	0.022
mp-23309	ScCl ₃	7.479	0.01
mp-23225	BBr ₃	9.314	0.01
mp-23280	AsCl ₃	12.579	0.011
mp-30103	AuF 5	90.227	0.009
mp-697133	Cs2CaH4	9.862	0.022
mp-28067	ThIN	24.438	0.027
mp-23189	BI3	5.812	0.012
mp-573051	ReO ₃ F	7.545	0.012
mp-561317	Rb2NiF4	1000	0.03
mp-28099	SBr	12.025	0.017
mp-19167	Rb ₂ NiO ₂	80.834	0.035

Table S1 Data for the results shown in Figure 5-b (n-type doping) along with Material Project ID (MPID) and chemical formula.

mp-29940	SbClF10	1000	0.012
mp-22978	Rb ₂ MnCl ₄	1000	0.029
mp-560851	CsIOF ₄	30.547	0.017
mp-560449	K3Ni2F7	543.866	0.045
mp-30943	MgPSe ₃	55.675	0.021
mp-19252	K2NiO2	32.672	0.05
mp-8616	ScAg(PS ₃) ₂	11.061	0.023
mp-30295	W CCl18	47.448	0.01
mp-28938	Nb ₃ TeCl ₇	9.572	0.019
mp-558725	Ba ₅ Ru ₂ Br ₂ O ₉	35.562	0.027
mp-642795	PHSF ₂	5.391	0.021
mp-7148	K ₂ SrTa ₂ O ₇	1000	0.051
mp-27358	Se ₂ O ₅	12.301	0.026
mp-29422	HfCl4	11.566	0.018
mp-23472	Re(AgCl ₃) ₂	12.521	0.025
mp-8192	Rb2PtF 6	414.351	0.03
mp-561379	GaRe(Cl ₃ O) ₂	25.821	0.01
mp-10402	TiTl2F 6	15.446	0.029
mp-7979	K2PdF 6	36.232	0.034
mp-3821	K2PtF 6	25.801	0.036
mp-27501	Cs2ThCl 6	84.576	0.021
mp-30984	S(IO ₃) ₂	5.617	0.015
mp-30977	B₅H₅Br	9.04	0.012
mp-27782	XeIF 7	66.555	0.019
mp-28601	NbBr₅	15.55	0.015
mp-29402	KGaI₄	7.274	0.019
mp-3970	K2TiF 6	16.734	0.042
mp-7824	K2ReF6	13.822	0.039
mp-555805	AlSC17	26.41	0.031
mp-680059	Re ₃ (SCl) ₇	389.736	0.016
mp-622197	Cs2PtS (O3F) 6	1000	0.017
mp-23076	Rb ₂ CoCl ₄	384.623	0.02
mp-764233	Na CoO 6	26.061	0.039
mp-562569	CsPPbS ₄	30.236	0.031
mp-561011	Li ₂ Ta ₂ (OF ₂) ₃	263.593	0.05
mp-624117	Cs ₃ V ₄ Te ₂ ClO ₁₄	414.251	0.037
mp-29432	NaScCl ₄	26.034	0.036
mp-8720	Rb ₂ MnTe ₂	11.563	0.029
mp-638009	RbPPbS ₄	15.74	0.035
mp-2865	K ₂ CuF ₄	39.43	0.046
mp-9321	Ba2HfS4	52.806	0.063
mp-13985	Li2PdF 6	302.332	0.07
mp-754128	Ba3Hf2O7	13.48	0.089

mp-18003	CsCuS ₄	40.912	0.034
mp-638150	KPPbS4	25.154	0.038
mp-556741	KNaThF 6	145.108	0.046
mp-17095	CsCuSe ₄	46.414	0.032
mp-10322	BaHfN ₂	180.93	0.094
mp-8335	Ba ₂ ZrO ₄	15.023	0.09
mp-3104	BaZrN ₂	111.406	0.093
mp-755895	Ba ₃ Zr ₂ O ₇	35.055	0.091
mp-9205	KSeO ₂ F	22.678	0.06
mp-27389	KSb ₂ F ₇	62.235	0.025
mp-8719	K ₂ MnTe ₂	15.405	0.037
mp-559068	Na ₂ Pd(SeO ₄) ₂	23.203	0.059
mp-540584	K ₂ PdO ₂	42.654	0.089
mp-18365	RbCuSe ₄	6.316	0.036
mp-5532	Sr ₂ TiO ₄	1000	0.116
mp-3349	Sr ₃ Ti ₂ O ₇	185.856	0.115
mp-6560	KSO ₂ F	45.937	0.066
mp-18996	TlV3O8	12.88	0.041
mp-9517	SrTiN ₂	1000	0.121
mp-867570	Rb4Sb2O5	29.446	0.034
mp-6384	RbSO ₂ F	52.814	0.063
mp-556645	RbNbAsClO₅	85.26	0.041
mp-29405	RbSnI ₃	28.622	0.039
mp-19172	KV3O8	67.283	0.044
mp-3637	YOF	76	0.154
mp-757850	K4Sb2O5	71.87	0.039
mp-567681	CsPbBr ₃	5.531	0.043
mp-647813	Cs ₂ CrO ₄	18.653	0.038
mp-559911	V4S Br4	22.272	0.018
mp-16915	BaTiOF ₄	211.946	0.071
mp-29304	Y ₂ InCl ₇	18.187	0.024
mp-572546	CsRe(Cl ₂ O) ₂	125.655	0.029
mp-7928	K ₂ PtS ₂	11.852	0.087
mp-8621	K ₂ PtSe ₂	7.369	0.082
mp-8623	K ₂ Te ₂ Pt	5.966	0.073
mp-29300	Ga2CuCl 8	912.276	0.045
mp-567776	Cs2AgAuCl6	144.263	0.045
mp-11924	Rb ₂ TaCuSe ₄	5.247	0.029
mp-42190	K2NaTiOF₅	759.456	0.069
mp-40143	Cs2KZrOF 5	8.248	0.056
mp-8972	K2TaCuSe4	16.837	0.032
mp-555160	CsYSeCl ₂ O ₃	178.754	0.053
mp-12047	K ₃ Na(RuO ₄) ₂	5.67	0.081

mp-27126	Na2Mn3Cl 8	22.402	0.06
mp-29817	GaP ₂ I 9	11.642	0.012
mp-8900	K ₂ VAgS ₄	18.961	0.036
mp-866301	BaBSbS4	8.359	0.046
mp-567928	CsBi3Se5	1000	0.054
mp-28453	CsAuI ₃	29.869	0.041
mp-569548	CsAuBr ₃	75.682	0.05
mp-8570	Ba ₃ Zr ₂ S ₇	6.427	0.059
mp-23153	Ι	68.757	0.092
mp-765136	LiMn &F33	49.268	0.048
mp-6999	ScPS ₄	12.448	0.077
mp-753546	Li 8TiS 6	8.148	0.077
mp-23484	CsAuCl ₃	258.965	0.056
mp-8226	ThNF	75.174	0.224
mp-8725	HfSnS₃	13.635	0.092
mp-28046	AlP ₂ I ₉	14.267	0.016
mp-766540	Li4TiS4	23.218	0.069
mp-28159	As(BrF2)3	24.029	0.074
mp-561259	Na3NbOF 6	223.444	0.099
mp-7571	KNbF 6	37.49	0.117
mp-754712	NClO ₃	5.328	0.116
mp-29526	BrNO ₃	6.471	0.11
mp-29345	LiGaI₃	6.548	0.043
mp-600186	Cs2MnBr4	39.341	0.046
mp-770618	MgMnO ₃	5.696	0.169
mp-28205	Na ₃ ReO ₅	25.006	0.137
mp-8818	Ca ₂ ZnN ₂	33.023	0.292
mp-29287	Cs3CoBr5	28.307	0.039
mp-23154	Br	41.875	0.126
mp-27445	As(IF2)3	11.694	0.078
mp-557772	CsNiF3	26.27	0.112
mp-540760	FePC1 ₈	34.54	0.049
mp-641699	CsNb2PS10	6.859	0.039
mp-556244	Xe ₂ NO ₂ F ₁₃	8.085	0.03
mp-14988	K4SnO3	6.088	0.053
mp-616439	Cs ₂ CuCl ₄	18.102	0.052
mp-561710	CsSnS ₃	5.572	0.083
mp-761057	Sr 5Nb4O1 5	6.653	0.142
mp-28178	NaNbCl ₆	13.217	0.09
mp-560601	K ₂ CuS(ClO ₂) ₂	67.918	0.084
mp-769582	Sr 5Ta4O1 5	5.743	0.147
mp-19388	BaNi2(AsO4)2	6.166	0.193
mp-569060	Cs ₂ PSe ₅	6.238	0.075

mp-22876	CsI3	6.657	0.061
mp-772813	Ca2Cu2O 5	7.715	0.116
mp-568244	TlSn2Br₅	30.669	0.063
mp-17315	Zr ₃ Tl ₂ OF ₁₂	66.292	0.083
mp-30106	AsC15	5.612	0.097
mp-27641	CsBr ₃	12.17	0.07
mp-27750	AsXeF 7	9.36	0.106
mp-23515	K2CoCl4	122.478	0.052
mp-540572	NCl ₃	9.496	0.063
mp-30164	CsSn ₂ Cl ₅	74.504	0.071
mp-23541	KSn₂Br₅	60.07	0.068
mp-19660	Sr ₂ V ₂ O ₇	41.456	0.091
mp-30011	SbKrF 7	6.025	0.079
mp-567780	RbSn2Br₅	81.136	0.067
mp-554732	RbSbS(O ₂ F) ₂	10.061	0.09
mp-30010	AsKrF 7	8.843	0.084
mp-760678	Sb2H4AuF16	344.183	0.143
mp-23630	NbBi4ClO8	10.935	0.156
mp-510557	CsN3	5.382	0.108
mp-17085	Rb ₂ Zr ₃ OF ₁₂	1000	0.093
mp-7280	PPdS	8.968	0.153
mp-17256	Rb2Hf3OF12	745.713	0.096
mp-672273	AlBiCl 6	7.566	0.054
mp-28163	K ₂ PdF ₄	138.818	0.086
mp-17888	K ₂ Zr ₃ OF ₁₂	693.092	0.1
mp-557451	CsReOF 6	226.783	0.088
mp-23539	KSn ₂ Cl ₅	29.913	0.084
mp-13986	Li2PtF 6	413.76	0.244
mp-622602	NaMoAsO 6	7.265	0.079
mp-621112	Cs 5Nb2S4Cl 9	395.289	0.07
mp-28211	IrS ₃ Cl ₁₁	11.228	0.049
mp-607436	ReCl ₃ O ₂	66.31	0.075
mp-540998	FeTeBr ₇	7.435	0.091
mp-560578	RbTeNO ₃ F ₄	12.553	0.084
mp-29541	GaTeI 7	11.113	0.108
mp-18997	LiMnPO ₄	11.297	0.199
mp-560515	K4Ru2Cl10O	13.197	0.11
mp-25305	Y2Ti2S2O5	1000	0.412
mp-554495	CaZr(PO ₄) ₂	5.573	0.139
mp-19123	Rb ₂ LiVO ₄	9.373	0.085
mp-554643	K ₂ SbSO ₄ F ₃	82.175	0.115
mp-570300	MnTlCl ₃	236.563	0.188
mp-20459	TiPbO₃	793.901	0.405

mp-4829	Na2ThF 6	39.647	0.192
mp-540997	FeTeC17	11.89	0.11
mp-556609	KSb(PS ₃) ₂	7.627	0.125
mp-557437	KBi(PS ₃) ₂	9.012	0.129
mp-560692	K4Nb6O17	33.636	0.124
mp-9481	TcS ₂	9.836	0.182
mp-30096	Be ₂ Te ₂ Cl ₆	6.875	0.125
mp-644325	CsFeSiO ₄	5.512	0.13
mp-18832	K ₂ VO ₂ F ₃	13.439	0.157
mp-568396	Ba(FeBr ₄) ₂	79.162	0.047
mp-28232	MgTi ₂ O 5	25.173	0.184
mp-12885	BaAl ₂ Sb ₂ O ₇	13.359	0.259
mp-505281	CsSbS (O3F) 6	8.507	0.052
mp-571235	ZrI4	6.252	0.096
mp-556637	Ba 6Na2Nb2P2O1 7	184.842	0.229
mp-27786	SbAs ₂ Cl ₁₃	6.452	0.043
mp-555113	Rb3Cu2(BiS2)5	73.505	0.117
mp-555131	CsCO ₂	7.292	0.095
mp-698206	Ba 5Re 3O1 6	66.19	0.068
mp-1707	BaN 6	5.624	0.297
mp-706632	H15RhBr3N5	5.962	0.095
mp-616597	ReHgO ₄	14.447	0.24
mp-571035	OsCl4	9.854	0.115
mp-27147	Rb3BiBr6	5.235	0.065
mp-17512	Zn(AuF ₄) ₂	9.485	0.227
mp-572597	SbPS ₄	10.754	0.092
mp-644129	KNiPH2O 5	167.451	0.276
mp-647366	KICl4	45.375	0.118
mp-4758	K2NbF7	129.918	0.098
mp-3975	K ₂ TaF 7	15.668	0.1
mp-29144	KTe ₂ F ₉	26.798	0.165
mp-8708	Mg(AuF4)2	70.156	0.234
mp-864954	MgMoN ₂	186.497	1.046
mp-27774	NClO 6	270.388	0.115
mp-672248	TaAsPC113	32.549	0.049
mp-556631	KZrSnF 7	28.112	0.152
mp-19219	Li ₃ VO ₄	15.426	0.294
mp-28719	Ba(AuF4)2	5.513	0.08
mp-23444	AsCl ₂ F ₃	23.744	0.102
mp-21724	ZnSiPbO ₄	96.555	0.189
mp-560675	K Cu(SiO4)2	175.722	0.207
mp-570962	SbI3(BrCl3)2	5.358	0.15
mp-561153	XeF ₃	10.884	0.165

mp-685281	TiZnH12(OF)6	17.145	0.1
mp-555741	RbAu(SO ₄) ₂	45.343	0.385
mp-560354	SbCl(OF ₃) ₂	42.049	0.198
mp-23576	CsSbClF ₃	12.425	0.086
mp-8716	K ₂ MnSe ₂	11.487	0.202
mp-505814	CsBa2Nb3O10	1000	0.521
mp-556647	BasRe3ClO15	6.71	0.079
mp-505034	Cs ₂ MnS ₂	10.454	0.196
mp-3237	Na2CuF4	28.993	0.276
mp-644827	TePC19	47.914	0.057
mp-765493	Ba2Sb2O5	5.199	0.165
mp-4002	Li2ZrF 6	8.607	0.402
mp-554554	K Bi(PS4)4	46.437	0.102
mp-542332	K ₂ Cu(CO ₃) ₂	12.132	0.122
mp-541114	Sr2RhF 7	15.675	0.134
mp-541134	TeAuBr∎	17.329	0.117
mp-27987	BrF₅	11.906	0.174
mp-15472	Ba4LiCu(CO 5)2	1000	0.264
mp-679927	Rb ₂ Sc(NO ₃) ₅	110.624	0.082
mp-27307	Na2ZrF 6	38.877	0.29
mp-561523	NbTlCl4O	15.49	0.085
mp-28575	W(S4Cl3)2	1000	0.139
mp-6841	Ba4NaCu(CO 5)2	1000	0.264
mp-555546	MgAs ₂ (XeF 5)4	6.311	0.068
mp-645272	TlV3(SeO 6)2	6.128	0.209
mp-8713	K ₂ MnS ₂	6.876	0.241
mp-8714	Rb2MnS2	12.285	0.228
mp-866688	Cs4P2PdSe8	6.072	0.092
mp-9639	BaCu(SeO ₃) ₂	30.499	0.211
mp-7181	CsSr ₂ Ta ₃ O ₁₀	1000	0.589
mp-554805	Sr ₃ Se ₃ (ClO ₄) ₂	28.802	0.143
mp-504427	Ti ₃ PbO 7	472.968	0.367
mp-17559	Y2TiO 5	217.449	0.244
mp-768915	Na3AuO3	25.938	0.105
mp-753353	Sr4LiCu(CO5)2	1000	0.306
mp-18725	YCrO ₃	8.167	0.323
mp-28175	Pd(SeCl ₃) ₂	14.895	0.065
mp-19443	WO ₃	266.9	0.319
mp-9640	SrCu(SeO ₃) ₂	82.126	0.225
mp-560005	TlRe ₃ (S ₂ Cl) ₂	42.675	0.163
mp-27921	Ti ₂ PCl ₁₃	21.86	0.079
mp-19453	Te ₂ MoO ₇	11.354	0.246
mp-23207	ClO ₂	8.955	0.242

mp-680413	Rb ₃ As ₇	8.375	0.047
mp-28179	NaTaCl ₆	9.981	0.221
mp-573373	PIC18	18.014	0.068
mp-560785	$K_2Y_4Sn_2S_{11}$	762.479	0.134
mp-17921	NbSeOF 7	112.453	0.167
mp-556518	K ₂ Pd(NO ₃) ₄	212.016	0.077
mp-680329	K3A87	12.073	0.051
mp-540628	Al(TeCl ₂) ₂	25.318	0.076
mp-28174	$Pd(SC_3)_2$	6.364	0.34
mp-559309	K ₃ ZnNCl ₄ O ₃	11.085	0.109
mp-767518	Na ₂ ScPCO ₇	311.021	0.284
mp-559568	K ₂ Se ₂ O ₅	17.689	0.096
mp-773432	KMnPCO ₇	496.408	0.319
mp-505451	HSN	6.218	0.147
mp-767722	VFe(P ₂ O ₁) ₂	75 782	0 319
mp-570229	ThBr ₄	11.808	0.226
mp-560715	Sn (PO 5)2	17.242	0.223
mp-17035	$\frac{\text{SH}(1 \odot 3)^2}{\text{K}_3\text{Sc}(\text{PO}_4)_2}$	8 132	0.132
mp-554948	NaI(OF)2	104 11	0.192
mp-27729	ICl ₃	19 777	0.322
mp-554160	K ₂ CuP ₂ O ₇	49 034	0.201
mp-27169	KTa ₂ O ₁₃	5 207	0.167
mp-572149	$Cs_2Al(NO_3)_5$	1000	0.094
mp-679989	Bi(Mo2Cl5)3	62 816	0.063
mp-28974	TiF4	366 716	0.003
mp-27514	NaFeCl4	179 897	0.172
mp-27322	Nb ₂ Te ₃ O ₁₁	33 37	0.327
mp-9780	RbHfAgTe ₃	18 509	0.279
mp-554523	TeBrO ₃ F ₅	12.865	0.301
mp-696291	$ZnH_4(NO_4)_2$	6.801	0.295
mp-24030	$ZrP_2(HO_3)_2$	12.471	0.403
mp-556522	$K_3Cu_2(BiS_2)_5$	16.823	0.183
mp-29903	TlTeF₅	10.136	0.339
mp-622258	RbV ₂ SbO ₈	18.412	0.214
mp-19496	KV ₂ SbO ₈	16.962	0.219
mp-560794	BaNbTePO	1000	0.206
mp-29295	Sr ₃ Sb ₄ S ₉	9.105	0.163
mp-769616	Na ₂ CrPCO ₇	120.426	0.322
mp-558121	K4Ba(VS4)2	34.669	0.121
mp-570186	Ga2Te2Br7	694.027	0.096
mp-557059	RbSnS4	5.294	0.079
mp-772763	K ₂ ScPCO ₇	93.405	0.276
mp-28189	FeSeC17	9.3	0.206

mp-27664	TiPC1 ₉	12,168	0.175
mp-554432	ReSbOF ₁₀	286.947	0.197
mp-29407	AlTel 7	6.761	0.207
mp-775198	Ti ₃ P ₆ WO ₂₄	1000	0.167
mp-557856	BCl(OF ₂) ₂	7.83	0.226
mp-753401	Sc ₂ TiO ₅	22.5	0.278
mp-18815	KVO3	8.549	0.359
mp-31012	K ₂ (NbBr ₃) ₃	43.286	0.058
mp-14864	$Cs_2Ti(PO_4)_2$	34.738	0.16
mp-8232	BaZrFa	15.071	0.125
mp-23434	Al2CuCla	186.94	0.228
mp-28387	PAuCl ₈	54 932	0.074
mp-556705	AsS(ClF ₂) ₃	23.086	0.157
mp-672338	$Cs(Bi_2Te_3)_2$	5.915	0.178
mp-768140	Na ₂ BiPCO ₂	347,916	0.307
mp-570857	Y(AlCl ₄) ₃	95.608	0.116
mp-581834	$CsNaf(WN_3)_2$	12.479	0.118
mp-30938	PAuS ₄	10.98	0.304
mp-622278	TIV ₂ SbO ₈	5.802	0.233
mp-561328	SbSe(BrF ₂) ₃	10.342	0.146
mp-571324	CNCl	5.361	0.116
mp-772808	K ₂ BiPCO ₇	10.175	0.277
mp-27859	SbI 5F 6	38.61	0.175
mp-27824	PIC16	15.48	0.122
mp-769604	K ₂ MnPCO ₇	343.232	0.318
mp-557260	RbSb ₂ F ₇	240.128	0.204
mp-558309	K4SnSb2F14	11.31	0.262
mp-16577	Li2CaHfF8	132.548	0.456
mp-720110	KRe ₃ Os ₃ (Se ₄ Cl ₃) ₂	1000	0.069
mp-650228	KIn(MoO ₄) ₂	8.478	0.231
mp-560591	NaTi2Al 9012	36.473	0.453
mp-762082	ThH10N4O17	11.524	0.102
mp-667283	Sr ₅ Re ₃ ClO ₁₅	73.005	0.151
mp-629690	Bi ₂ (PbS ₂) ₃	24.657	0.22
mp-542289	HgNO ₃	1000	0.22
mp-720586	CaH₄NClO₅	184.93	0.206
mp-680015	Re ₃ (SeBr) ₇	148.261	0.156
mp-560120	Na2Pd(NO3)4	41.464	0.216
mp-556552	K ₄ VP ₂ S ₉	31.774	0.141
mp-6113	LiTiAsO 5	20.565	0.247
mp-7310	ZrPbF 6	43.492	0.144
mp-28536	BaSe ₂ O ₅	10.981	0.228
mp-22694	LiPPbO ₄	26.152	0.311

mp-19459	K ₂ MgV ₂ O ₇	38.197	0.173
mp-569653	SnPCl ₉	35.62	0.064
mp-556210	Bi2CO 5	6.85	0.412
mp-23598	SIO ₃ F	10.375	0.182
mp-560016	NaNb2PO 8	1000	0.334
mp-27472	NbSbF10	296.273	0.292
mp-13792	KTaP4O13	105.003	0.206
mp-554129	Br3N(O2F 5)2	87.93	0.164
mp-27017	LiSnPO ₄	7.09	0.312
mp-17101	CaNb ₂ O ₆	12.89	0.408
mp-667345	NbTl2PO 6	785.295	0.186
mp-559151	BaSrTa ₂ O ₇	1000	0.402
mp-642792	BaBi2(MoO4)4	285.483	0.183
mp-15750	TaAgP4O13	10.954	0.212
mp-540921	CsCuF4	5.731	0.322
mp-647102	KNOF2	39.248	0.293
mp-29408	AlSeBr ₇	9.956	0.299
mp-29048	Sr(BiO ₂) ₂	27.598	0.152
mp-17953	MgNb2O6	8.876	0.444
mp-679984	Cs4Ru2Cl10O	215.367	0.089
mp-722900	CaH3NO 5	73.369	0.104
mp-19474	Ba ₂ V ₂ O ₇	43.321	0.239
mp-562977	RbNbS2O9	934.479	0.279
mp-27788	TaPCl10	10.274	0.275
mp-558938	Zn4SiTePbO10	18.78	0.24
mp-29194	Cs ₂ Au ₂ Se ₃	7.363	0.102
mp-638424	Sb ₂ S ₂ O ₉	10.844	0.298
mp-683984	Al(SeCl)4	123.78	0.094
mp-29264	SIC17	6.002	0.124
mp-30003	AuSO ₄	22.006	0.182
mp-768144	Na ₂ SbPCO ₇	12.285	0.369
mp-559760	ScIO	31.994	0.175
mp-27780	TcCl ₄	18.311	0.199
mp-555862	CsZr(NO ₃) ₅	83.51	0.148
mp-24656	YH3(SO4)3	86.48	0.119
mp-541013	TiI4	89.537	0.117
mp-29568	RuS ₃ Cl ₈	6.11	0.23
mp-6764	BaSi ₂ (NO) ₂	21.379	0.538
mp-555408	SbS 7IF 6	16.221	0.132
mp-28185	TaClF 8	132.977	0.233
mp-571313	Hf(SeCl 6)2	15.143	0.094
mp-28330	TeAuCl ₇	33.706	0.232
mp-5803	NbPO 5	17.831	0.386

mp-5900	Ba ₂ ZrF 8	87.531	0.255
mp-4325	$Zr(SO_4)_2$	15.019	0.302
mp-555490	KRe ₂ O ₄ F ₇	27.503	0.48
mp-29129	K ₂ Te ₂ O ₅	7.037	0.173
mp-649253	NbClF 8	24.122	0.246
mp-554147	$Rb_2Nb_2P_2S_{11}$	250.43	0.291
mp-18964	K ₃ NaCr ₂ O ₈	15.89	0.245
mp-557132	Os ₂ O ₃ F 7	97.799	0.251
mp-28037	Mo ₂ SBr ₂	50.8	0.126
mp-32311	Re2NiO8	389.368	0.536
mp-560208	K3NbAs2O9	395.894	0.344
mp-558548	Na3B6NO13	41.075	0.196
mp-531826	Li ₂ PtO ₃	8.765	0.326
mp-554517	NaMnF ₄	5.441	0.539
mp-30092	TiCl ₄	34.442	0.235
mp-28870	PRhO ₄	5.719	0.23
mp-743697	MgZr3Tl10(MoO4)12	66.332	0.154
mp-27452	Al2PdCl 8	31.092	0.321
mp-27308	SbBrF₅	5.142	0.256
mp-581922	CsMo3Br3Cl4	48.892	0.172
mp-24144	Na ScH4(C2O7)2	1000	0.278
mp-22869	ClO ₃	8.408	0.302
mp-745150	VZnHPbO₅	6.671	0.338
mp-6539	RbTiPO₅	13.095	0.229
mp-555286	CsNb(PO ₄) ₂	18.872	0.341
mp-556047	K2OsCBr5O	73.933	0.202
mp-560732	BaNaZrF 7	36.255	0.312
mp-27735	GaSbCl6	28.033	0.207
mp-23623	B₅Pb2BrO9	6.384	0.212
mp-680446	Cu ₃ P ₄ Se ₄ Br ₃	6.146	0.133
mp-23396	MoNCl ₃	7.436	0.267
mp-554412	RbTa(PO ₄) ₂	10.102	0.352
mp-6278	$Zn_2Cu(AsO_4)_2$	7.232	0.636
mp-5073	RbNO3	7.47	0.166
mp-3247	Cs ₂ TiS ₃	16.997	0.144
mp-23549	Bi3B 5O12	146.811	0.321
mp-9856	Cs ₂ ZrSe ₃	6.837	0.13
mp-28431	Sb(IF ₃) ₂	90.746	0.33
mp-579086	KSrNb2O &F	1000	0.551
mp-562854	CsNb2BiO7	1000	0.558
mp-27935	AlICl 6	15.817	0.25
mp-686949	ThCr(IO 5)2	20.08	0.245
mp-571412	RbNas(WN3)2	21.525	0.176

mp-23376	GaSeBr7	37.737	0.371
mp-558521	B ₂ Se ₂ O ₇	6.774	0.287
mp-28535	Ca ₂ Se ₃ O ₈	9.24	0.38
mp-29114	Re ₃ Te ₄ Cl ₅	83.855	0.117
mp-9172	Li ₄ TiO ₄	11.561	0.306
mp-505113	TiSn F1 6	300.755	0.121
mp-4674	BNF 8	6.725	0.179
mp-558114	Sr4NbAlO 8	708.633	0.423
mp-28766	K ₂ TiS ₃	12.61	0.187
mp-581217	Cs ₂ Nb ₄ O ₁₁	27.075	0.22
mp-555512	RbCO ₂	9.135	0.266
mp-672212	NaNb13O33	18.392	0.405
mp-28808	TlReO ₄	5.645	0.227
mp-557108	Ba2Nb2TeO10	9.696	0.245
mp-543046	CsScP2(HO4)2	29.905	0.36
mp-559228	Rb ₂ HfS ₄	7	0.278
mp-654447	Ni(XeF 8)2	39.811	0.141
mp-706995	ZnCoH18N 6Cl 5	10.752	0.294
mp-29419	Hf(Te ₂ Cl ₃) ₂	5.746	0.381
mp-757224	Th4P 6O23	1000	0.245
mp-6394	RbTiAsO₅	6.826	0.25
mp-541353	$K_2(TcS_2)_3$	294.556	0.116
mp-541740	TaPO₅	12.031	0.506
mp-541956	CsTiAsO 5	6.063	0.246
mp-6661	BaTi(SiO ₃) ₃	67.8	0.475
mp-30320	RbHfF₅	37.953	0.172
mp-30213	Sb_2BrF_{15}	30.305	0.234
mp-30946	Ga₂PdI 8	88.414	0.163
mp-554111	Ti3Tl3(PO4) 5	16.901	0.196
mp-557163	TaPbF 7	6.702	0.513
mp-559519	Na4TiAs2O9	246.875	0.162
mp-561062	NaSb3(PO 5)2	7.223	0.201
mp-640883	VBi(PbO ₃) ₂	8.868	0.422
mp-27802	BaSn ₂ S ₃	7.677	0.231
mp-23809	RbScBP ₂ HO ₉	83.277	0.423
mp-19276	BaMoO ₄	6.726	0.604
mp-559516	K3Nb(SO4)4	47.768	0.186
mp-21945	Ge ₃ Ru ₂	8.495	0.359
mp-581864	CsAsSe ₂	30.413	0.18
mp-9308	Li4ZrF 8	6.425	0.356
mp-540629	Al ₂ Te ₂ Cl ₇	955.423	0.188
mp-28358	NbAlCl ₈	18.647	0.138
mp-570544	Zr(SeCl 6)2	13.805	0.122

mp-560331	K ₂ ZrS ₄	5.768	0.31
mp-560021	AuS3(O3F)3	279.553	0.204
mp-28845	OsO ₃ F ₂	17.789	0.669
mp-28933	Br ₂ O ₃	8.73	0.266
mp-735504	KVPHO 6	1000	0.313
mp-743636	NaNiP2HO7	12.306	0.441
mp-555321	BaNiF4	77.032	0.301
mp-556341	Ti ₄ S Br 6O	40.89	0.193
mp-19512	BaV2(PO 5)2	22.231	0.405
mp-558160	NaYCO ₃ F ₂	13.614	0.447
mp-19048	BaWO ₄	8.752	0.617
mp-27349	BSF 7	15.991	0.383
mp-30159	AuBrF 6	5.849	0.629
mp-6268	KTiPO₅	7.867	0.295
mp-19134	CaCrP ₂ O ₇	172.673	0.534
mp-556418	AlSCl ₃ O ₂	12.093	0.462
mp-504957	RbReCl ₄	38.125	0.126
mp-555678	Na4Ti 5O12	14.804	0.836
mp-19057	CaNiP ₂ O ₇	67.477	0.533
mp-582648	RbRe ₃ Br ₁₀	52.746	0.122
mp-6651	$K_2Ta_2(OF_2)_3$	939.2	0.354
mp-683967	Cd7Te7Cl8O17	9.852	0.214
mp-8851	BaCuP ₂ O ₇	13.388	0.537
mp-19487	Ba2Mn(PO4)2	127.893	0.446
mp-753945	ClOF ₃	11.59	0.533
mp-18953	NaV(OF)2	286.651	0.921
mp-19450	ScTl(MoO ₄) ₂	7.219	0.718
mp-16831	CaTi4(PO4)6	14.558	0.344
mp-647342	SbP ₃ C(NCl ₅) ₃	9.448	0.222
mp-559283	TiSO₅	439.127	0.373
mp-556017	Th2P2O9	143.813	0.327
mp-680356	ZrN 6O1 7	28.95	0.113
mp-555580	SrZr4(PO4)6	16.932	0.328
mp-562434	Cs3Ta5O14	12.357	0.393
mp-556091	Cs ₃ Ta ₂ S ₁₁	56.443	0.226
mp-542662	Ga2Te2Cl7	1000	0.21
mp-555119	SrTaF 7	34.287	0.61
mp-560843	Na ₄ Zr ₂ Ti(CO ₄) ₄	625.099	0.326
mp-28672	Zr ₂ TeBr ₁₂	149.505	0.21
mp-558660	Mg2BiPO6	24.699	0.546
mp-30945	Ga₂PdBr 8	813.281	0.197
mp-867334	KYGeS ₄	39.629	0.532
mp-554379	AsXeF11	13.18	0.224

mp-6390	Rb3Ti3(PO4)5	37.59	0.242
mp-4200	ScPO ₄	8.216	0.524
mp-505088	NbTe ₄ I	6.129	0.196
mp-770968	Na ₃ NiPCO ₇	53.23	0.701
mp-569435	KBi(PSe ₃) ₂	12.93	0.25
mp-734042	MgH12(NO 6)2	15.861	0.293
mp-561392	TcSO F	21.307	0.391
mp-707060	NbCl ₄ F	51.804	0.313
mp-5403	Rb ₂ TiO ₃	18.449	0.322
mp-679999	Re ₃ (SeCl) ₇	1000	0.183
mp-758597	K2TiSi3(HO5)2	23.183	0.325
mp-652776	Rb ₂ V(PO ₄) ₂	33.758	0.343
mp-19075	K ₂ SrV ₄ O ₁₂	27.846	0.192
mp-551826	NbTlBr4O	128.59	0.429
mp-29555	MoBr ₂	20.544	0.133
mp-735530	Ba2Fe3P HO22	66.762	0.631
mp-29498	WBr ₂	20.427	0.124
mp-12177	Te ₂ O ₅	6.229	0.923
mp-23808	KScBP ₂ HO ₉	33.476	0.541
mp-23398	BC1F 6	30.661	0.452
mp-541299	Zr4Cd(PO4)6	16.69	0.349
mp-40144	SiNiH12(OF)6	34.507	0.594
mp-558894	Ba4Ti2PtO10	13.625	0.311
mp-734194	BeH (IO 5)2	6.869	0.418
mp-18929	BaV2O6	7.669	0.22
mp-560742	Ba ₂ TeP ₂ O ₉	26.278	0.485
mp-676448	CsTiZnOF ₅	37.273	0.455
mp-505234	BaP2PbO7	15.311	0.474
mp-19165	BaFe(Si ₂ O ₅) ₂	231.838	0.44
mp-27854	TaCl ₄ F	84.639	0.145
mp-647385	V2Pb4O9	16.72	0.284
mp-696940	TiH12C2(NF)6	138.6	0.26
mp-558235	CaTaF 7	1000	0.214
mp-723109	BeH14(I2O9)2	6.214	0.369
mp-29085	Sr zr3F22	1000	0.314
mp-18975	Na2SrV4O12	8.662	0.22
mp-510018	Rb ₂ CuH ₁₂ (SeO 7) ₂	170.716	0.31
mp-623854	NaNb3O8	50.175	0.749
mp-3368	LiNb ₃ O ₈	6.256	0.668
mp-570531	NbP2NCl12	8.892	0.209
mp-696651	K ₃ NbHOF 7	1000	0.203
mp-561502	Ba \$B 5N 10F	28.191	0.295
mp-4609	HfSiO4	6.179	0.602

mp-620029	MoCl ₂	32.989	0.163
mp-573815	ReI3	17.885	0.247
mp-541236	Na 5HfAs3	11.99	0.428
mp-556442	Tc ₂ O sF ₄	69.656	0.318
mp-556587	AuSC17	54.996	0.301
mp-707276	TeH _{\$} SN ₂ O ₅ F ₃	36.057	0.526
mp-540946	LiReO ₄	5.238	0.482
mp-17892	Ca ₂ VN ₃	23.525	0.471
mp-541745	Rb3Nb2S11	6.138	0.29
mp-645687	CsTi(PS ₄) ₂	25.612	0.182
mp-12185	LiCu(PO ₃) ₃	60.265	0.39
mp-559115	P2RhClF 6	11.489	0.257
mp-567731	Nb ₃ Se ₁₀ Br ₃	50.908	0.198
mp-683918	RbC ₂ N ₃	30.391	0.553
mp-6488	KTiAsO₅	6.962	0.388
mp-556139	BaZr(PO ₄) ₂	9.963	0.606
mp-17407	Au ₃ F ₈	21.838	0.467
mp-761037	Hg(ClO ₃) ₂	101.297	0.886
mp-559493	TiPC1+O	242.735	0.168
mp-571011	CsI4	20.275	0.31
mp-758103	$YH_2(CO_3)_2$	20.772	0.238
mp-706630	B 5H 7	35.634	0.404
mp-27213	AuBr ₃	127.051	0.208
mp-24509	CdH4(BrO4)2	6.006	0.466
mp-555122	Rb2Pd(NO3)4	96.017	0.445
mp-676712	ReSeCl	9.598	0.173
mp-540876	KTh2(PO4)3	13.684	0.237
mp-706386	ZrH 6O3F4	45.427	0.796
mp-554280	RbTh2(PO4)3	12.969	0.235
mp-541975	Rb ₃ Ta ₂ S ₁₁	39.477	0.308
mp-27556	CsNbO3	11.536	0.348
mp-685352	Ca ₂ NF	1000	0.339
mp-570966	ZrP2NCl11	25.921	0.137
mp-867268	K4P2PdS 8	9.275	0.675
mp-23334	Bi2TeO 5	20.322	0.324
mp-27245	BSBr	58.145	0.492
mp-556024	Na2TiF 6	199.041	0.402
mp-557432	GeClO ₂ F 5	161.877	0.263
mp-5450	K2ZrF 6	64.108	0.4
mp-28985	SbSeC1 ₉	6.182	0.301
mp-555272	Na ₅ Zr ₂ F ₁₃	26.773	0.475
mp-567424	K NbAs Pb	8.334	0.107
mp-573429	Cs 5Bi(MoO4)4	28.052	0.376

mp-560407	KNbSi2O7	12.803	0.405
mp-559118	CsTa(PO ₄) ₂	13.579	0.7
mp-583297	Ba Nb4S13O3	5.59	0.293
mp-530262	Li15Cr2N9	9.747	0.36
mp-554605	Rb ₂ SbCl ₃ F ₂	630.109	0.672
mp-29794	Ba2PdF 6	111.318	0.305
mp-5996	Na2Ti2Si2O9	20.544	0.715
mp-19034	Mg3V2O 8	6.85	0.47
mp-6456	LiNbGeO₅	14.56	0.648
mp-570248	NaC ₂ N ₃	107.041	0.393
mp-620652	NaSr ₂ AlP ₃	48.767	0.28
mp-557599	Rb2Bi(ClO4)5	18.993	0.402
mp-572864	Rb5Th(PS4)3	5.663	0.258
mp-559530	Ti 5(PO 5)4	10.715	0.347
mp-17803	$Nb_2Tl_4S_{11}$	6.075	0.462
mp-27998	KNb3O8	143.122	0.414
mp-505564	Bi ₂ Se ₄ Cl ₇	150.112	0.303
mp-540668	BS_2	54.712	0.718
mp-3033	RbTaO₃	10.27	0.419
mp-556548	Bi(BO ₂) ₃	10.168	1.159
mp-677002	SrZr12B2I5Cl23	366.301	0.2
mp-27880	Nb ₃ Cl ₇	25.236	0.195
mp-3488	Na2Ti3O7	1000	1.075
mp-532604	Na ₂ Zr ₁₂ B ₂ I ₅ Cl ₂₃	42.797	0.202
mp-707483	TiP2H4O9	1000	0.801
mp-14873	K4Nb $si(P_2O_{17})_2$	5.79	0.306
mp-29282	P2PtO7	25.781	0.621
mp-560767	KNaTiO ₃	14.556	0.559
mp-6228	Na2TiGeO 5	8.632	0.804
mp-560977	KTiPS ₅	18.466	0.295
mp-554195	Sb3As2S14(IF 8)3	306.889	0.482
mp-510036	$Fe_2Cu(P_2O_7)_2$	7.064	1.093
mp-29412	Ta3Br7	7.027	0.177
mp-29051	WS Cl4	106.92	0.137
mp-559281	Na ₃ Cr ₂ (PS ₄) ₃	11.253	0.358
mp-561518	Mg2BiAsO6	27.563	0.39
mp-744625	ZnCrH15N5Cl4F	24.275	0.275
mp-17499	K 7Nb(SO4)6	22.554	0.19
mp-28903	Zr FeCl14	9.712	0.208
mp-769319	LiNb(OF)2	14.717	1.044
mp-15004	Ca ₃ ZrSi ₂ O ₉	13.591	0.516
mp-27212	Sb ₂ IF ₁₅	15.954	0.302
mp-667426	Bi2Te2O7	6.14	0.324

mp-28481	Ti(ClO ₄) ₄	997.878	0.381
mp-735541	NiSn ₂ H ₁₂ (OF) ₆	11.028	0.901
mp-558244	As(IF ₃) ₂	288.427	0.307
mp-19179	Ba ₂ V(SiO ₄) ₂	579.592	0.548
mp-745159	MoPH ₃ O ₇	12.897	0.927
mp-6138	Na2TiSiO 5	9.441	0.953
mp-541947	Rb ₂ Th(PSe ₃) ₃	8.584	0.373
mp-745166	Sr ₂ Fe ₂ H ₂ OF ₁₀	681.484	0.269
mp-18935	K ₂ V(PO ₄) ₂	85.85	0.583
mp-27697	ThI4	6.776	0.654
mp-704408	K 8V2(S2O9)3	1000	0.214
mp-17455	K 7Ta(SO4)6	27.06	0.203
mp-16055	KLi3Zr2(Si2O5)6	56.244	0.459
mp-28085	KAs ₂ F ₇	23.872	0.645
mp-581868	NaY(IO3)4	12.684	0.242
mp-6081	Ba2Ti(SiO4)2	461.582	0.576
mp-18687	NbF₅	128.531	0.287
mp-28346	SrSe ₂ O ₅	5.266	0.884
mp-628908	KICl ₂	5.281	0.455
mp-755663	Ta2Pb2O7	5.708	0.395
mp-556615	CaBi (PO 5)4	6.365	0.889
mp-23307	NbCl 5	32.447	0.119
mp-3180	Ta ₂ Te ₂ O ₉	5.927	0.792
mp-559894	Sb ₂ Te ₂ O ₉	27.64	0.615
mp-542148	$Sb_2N_{5}F_{11}$	663.868	0.308
mp-6708	RbNb2PS10	7.486	0.824
mp-560519	Ba ₃ ScCO ₃ F ₇	23.06	0.287
mp-555305	NaNb(OF)2	107.382	1.081
mp-745012	Ni ₂ P ₂ O ₇	7.465	0.826
mp-677416	Na 5Mg 5In3(SO4)12	39.732	0.666
mp-667305	ReN(OF ₂) ₃	832.88	0.423
mp-556902	KLi4NbO 5	5.277	1.549
mp-7601	NbGaO4	11.309	0.961
mp-680298	Rb3Ta5O14	20.973	0.424
mp-778433	Li ₃ Cr ₂ (PS ₄) ₃	6.825	0.476
mp-558054	SrLi ₂ Ta ₂ O ₇	811.809	0.459
mp-24196	Tl2CuH12(SO 7)2	266.874	0.609
mp-557171	Na ₂ Cu(PO ₃) ₄	722.379	0.375
mp-765597	HS ₂ IO 8	45.397	0.775
mp-567414	BiAuCla	1000	0.715
mp-680756	Na4TiP2O9	463.63	0.479
mp-654301	Nb 5 P 6 O3 0	100.831	0.613
mp-561197	TaF₅	66.33	0.34

mp-752443	$Te(S_2O_7)_2$	5.521	1.043
mp-29426	Y 5C2I 9	177.827	0.264
mp-570193	NaAuCl4	5.481	0.391
mp-18914	K2M0O4	258.979	0.658
mp-557441	KAu(IO ₃) ₄	13.694	1.302
mp-18827	AlVO ₄	15.685	1.001
mp-675651	MgPS ₃	5.487	0.807
mp-18743	CaMnP ₂ O ₇	44.716	1.217
mp-557628	AsS(IF ₃) ₂	62.65	0.407
mp-23403	SbIF ₅	1000	0.364
mp-554572	K3NbP2O9	635.167	0.545
mp-676801	K 7Th 6F31	80.922	0.249
mp-27927	NbAlO ₄	39.586	1.107
mp-29831	TaCl₅	32.357	0.155
mp-30142	Be4N 6O1 9	362.601	0.309
mp-28030	Li Nb2O 9	15.153	1.089
mp-30097	Bi ₂ Te Cl 8	212.124	0.746
mp-28778	KScF4	1000	0.818
mp-683955	KTaPS 6	12.234	0.226
mp-720104	Na4Al3Ge3NO14	95.99	0.331
mp-26949	LiSn ₂ (PO ₃) ₅	5.568	1.047
mp-555424	CaNb ₂ (P ₂ O ₇) ₃	1000	0.39
mp-14333	TaAlO ₄	13.275	1.222
mp-569175	ZrCl ₄	44.209	1.178
mp-13627	Y3ReO8	7.378	1.324
mp-648414	V_2PS_{10}	33.555	0.621
mp-555085	KAu(NO3)4	853.289	0.917
mp-572794	ReP(Cl ₂ O) ₃	223.628	0.698
mp-768674	Cs4Zr3Se14	19.411	0.3
mp-546285	NbI3O	7.646	1.072
mp-10499	LiZr ₂ (PO ₄) ₃	13.468	0.752
mp-556719	K2Ti(SiO3)3	7	0.689
mp-558692	Sb ₂ ClO ₂ F ₁₁	278.963	0.755
mp-707219	$K_2Zr_2ZnH_{12}(OF_2)_6$	736.939	0.931
mp-542013	Rb ₄ Zr ₃ Se ₁₄	16.964	0.328
mp-554376	Y4TiSi2(O3F2)3	1000	0.397
mp-573751	AlTeC17	7.102	0.765
mp-23089	SrTa2Bi2O9	102.905	0.447
mp-23614	SrNb2Bi2O9	140.741	0.454
mp-559314	Na5TiP2OsF	666.72	0.495
mp-540995	Rb 5Nb3OF1 8	1000	0.259
mp-707343	ZrH12C2(NF)6	544.421	1.041
mp-27184	B10(Pb2O7)3	14.465	1.533

mp-23929	ZnH s(NO 5)2	1000	0.447
mp-707981	Y4H NO13	210.047	1.104
mp-541867	CsRe3(O3F 5)2	286.69	0.892
mp-29040	Li3Zr4F19	268.491	1.136
mp-6571	BaCuAs ₂ O ₇	7.518	1.318
mp-549720	NbI2O	48.468	1.077
mp-18271	Na 5Ti2Si2PO13	831.071	1.732
mp-540675	SeCl ₄	14.603	0.408
mp-559692	Ta2Cd(P2O7)3	6.393	0.597
mp-556697	CaTa2Bi2O9	16.386	0.493
mp-541735	K4Ti3S14	22.788	0.416
mp-5274	ThTi2O 6	16.951	1.792
mp-561396	Li3CrF 6	23.7	0.551
mp-723419	Sb ₂ S ₁₉ F ₁₂	29.264	0.355
mp-672352	Al(ICl ₂) ₃	29.304	0.346
mp-542121	Rb4Nb2Si8O23	239.444	1.336
mp-559000	SbSe 6IF 6	7.999	1.079
mp-557256	RbP₃PbO 9	7.55	0.575
mp-680246	Cs4Zr3S14	18.488	0.387
mp-752467	NbO ₂ F	18.971	1.412
mp-542067	Rb4Ti3S14	24.197	0.429
mp-762295	K2Mn3V2(HO5)2	8.655	0.875
mp-22583	KInP ₂ S ₇	6.417	0.88
mp-558360	AlAs ₃ S ₅ Cl ₄	16.729	1.25
mp-28774	KSnF ₃	5.689	0.975
mp-560745	AuN 5O14	91.854	1.168
mp-557786	CaNb ₂ P ₂ O ₁₁	12.536	0.469
mp-680284	Rb 6Ta4S2 5	12.145	0.261
mp-31003	B10H13I	26.178	0.443
mp-707782	K 6Zr3H 6(OF)12	48.215	0.516
mp-571250	TaP ₂ Se ₂ Cl ₅	54.341	0.907
mp-556728	TaP ₂ S ₂ Cl ₅	110.898	0.936
mp-556834	RuCl(OF ₃) ₂	71.407	1.912
mp-505400	BaZr ₂ F ₁₀	210.074	0.82
mp-559182	P2IrClF 6	49.455	0.72
mp-554016	K4Ti2PO4F9	1000	1.229
mp-560322	K2RuN3Cl3O 5	619.235	1.494
mp-530524	Zr3TlF15	41.929	1.293
mp-645364	Sr(PN ₂) ₂	13.411	0.333
mp-27994	HgBrO ₃	6.458	0.948
mp-567515	Rb2Hg2PdBr8	19.514	1.01
mp-560297	LiTaSiO₅	7.34	1.526
mp-8796	$Sr_2LiSc(B_2O_5)_2$	9.845	1.371

mp-680410	K ₃ Nb ₂ S ₁₁	5.78	0.333
mp-557470	$K_2Sb_2S(O_2F_3)_2$	10.262	1.773
mp-557301	K2Ti(Si2O5)3	515.602	1.043
mp-542863	Ca ₁ NbSi ₄ O ₁₇ F	752.817	1.229
mp-569561	TeCl ₄	8.249	0.513
mp-561454	KAu(SO ₄) ₂	85.428	1.149
mp-19440	LiVO ₃	28.172	0.844
mp-769404	YSeO ₃	77.611	1.308
mp-30996	RbAuBr₄	15.044	2.149
mp-24522	CuH2SO 5	10.268	3.727
mp-560032	NaNb2AsO8	5.251	2.276
mp-30930	AlI3	8.877	1.683
mp-27926	AsClF 8	21.765	1.509
mp-676501	K ₃ Sn ₂ S ₃ BrO ₁₂	961.711	1.289
mp-16691	SrLi ₂ Ti O ₁₄	5.899	0.535
mp-640341	Mo ₃ S / Cl ₄	8.736	0.908
mp-27300	RbAuBr ₃	197.527	1.113
mp-27678	Y ₂ Cl ₃	22.792	1.798
mp-756570	Rb ₄ SnO ₃	27.911	0.791
mp-849433	SrTiH4(OF3)2	42.834	1.816
mp-13361	$Cd_2Cu(PO_4)_2$	72.015	4.315
mp-532315	Sr17(Ta 5S21)2	31.146	0.787
mp-667369	Ca ₂ Zr 5Ti ₂ O ₁ 6	7.519	0.741
mp-23569	AsSe 6IF 6	5.224	1.813
mp-541240	Sb ₃ O ₂ F 5	19.142	2.039
mp-626799	ReH ₃ O ₅	5.39	3.158
mp-15543	NaLiZr(Si ₂ O ₅) ₃	36.614	0.466
mp-19432	KNaV2O6	13.294	1.097
mp-3283	RbNbO ₃	15.27	2.752
mp-24215	ScH ₃ Br ₃ N	13.604	1.784
mp-29704	Cs(SO ₂) ₂	282.641	1.001
mp-554737	CsAu ₂ F ₇	29.952	0.995
mp-505260	Te10M03I10	5.745	1.187
mp-21533	CuP ₂ PbO ₇	50.136	2.834
mp-568252	Rb ₂ Hg ₂ PdCl ₈	48.555	1.637
mp-572526	SbBr(OF ₃) ₂	296.203	2.967
mp-6245	K 5Nb4O12F	1000	2.081
mp-684010	K 8Ti 5P2(O4F11)2	644.604	1.197
mp-707811	ZrH 6NOF 5	120.473	2.653
mp-18957	NaMnO ₂	10.029	2.203
mp-543042	$ScP(H_2O_3)_2$	6.227	2.472
mp-554706	AsSe(ClF ₂) ₃	25.016	1.919
mp-555059	TcSb(OF ₄) ₂	563.916	1.831

mp-30325	In2(Se2O 5)3	11.794	1.105
mp-2650	P4S 7	7.169	1.284
mp-679987	NbP2S2Cl5	392.618	1.718
mp-568666	RbAuI ₃	73.873	1.423
mp-554704	TiPHO₅	6.718	2.874
mp-569675	Tl2Hg2PdCl 8	44.225	1.907
mp-30998	Ti(NO3)4	82.762	1.392
mp-561065	MgTi2(PO 5)2	6.649	2.879
mp-707735	MgH12(I4O3)2	18.207	2.471
mp-28885	PSe	7.678	2.073
mp-556006	OsCl4O	5.215	2.826
mp-28017	Na 8Ti 5O14	114.356	2.574
mp-30309	Y2Au5F21	9.798	2.312
mp-557792	HfSC1 ₆ O	53.127	1.161
mp-560146	Ba17Y16Zn 2Pt4O 57	20.123	0.339
mp-27297	ReCl ₄ O	52.846	2.328
mp-556689	KZrF₅	157.295	3.105
mp-581967	Nb ₂ O 5	175.162	2.406
mp-505794	ScH 6N2Cl3	68.959	2.91
mp-643570	NiH2SO 5	28.218	3.828
mp-759651	ScH 6Br3N2	72.12	2.943
mp-867371	K ₂ Y ₄ Cu ₄ Se ₉	27.094	3.531
mp-29602	K ₂ ZrTe ₃	22.201	2.229
mp-30989	Sn(NO ₃) ₄	5.38	1.874
mp-28261	Na4SnO3	45.119	2.309
mp-559790	K2Nb3Cl +O 5	10.044	1.485
mp-559150	Na zrP4ClO1 6	117.255	4.688
mp-573581	Na ₂ TeSe ₃	8.173	1.894
mp-23635	TlRe Se Cl3	17.558	2.945
mp-542931	Bi2B \$O1 5	13.966	2.505
mp-561190	NaAu(SO ₄) ₂	67.572	6.162
mp-24741	ScH ₃ NCl ₃	13.94	3.925
mp-40575	LiNi2P4H3O14	30.278	1.919
mp-638749	Te ₃ (PdBr) ₄	8.304	3.696
mp-607454	AlC3(NCl2)3	617.323	3.606
mp-28372	AuSeC17	87.366	3.042
mp-29027	TaI ₂ O	9.064	4.227
mp-29603	Rb ₂ ZrTe ₃	10.878	2.961
mp-6118	Ca ₃ Cu ₃ (PO ₄) ₄	9.157	6.581
mp-579058	Cs4Tc 6S13	331.553	1.715
mp-19080	Na2Mn3O7	40.891	7.179
mp-696078	K ₃ ZrH ₂ S(OF) ₅	977.22	2.646
mp-756748	ScH ₃ (ClO ₅) ₂	16.106	4.379

mp-18582	Rb ₂ Ti(Si ₂ O ₅) ₃	115.967	3.292
mp-583581	W2NCl9	29.183	2.243
mp-757840	Ba4(PtO3)3	8.272	3.692
mp-637112	AsS 7IF 6	67.595	2.478
mp-5449	Na ₂ Ti ₆ O ₁₃	24.507	5.759
mp-504934	Sc ₂ CI ₃	83.524	3.307
mp-555207	BN(OF ₂) ₂	616.756	7.495
mp-680168	$K_2Re_3C_2Se_5N_2$	11.488	2.694
mp-867823	RbTaGeS₅	195.612	7.264
mp-558153	Ba4Nb2(OF4)3	1000	1.192
mp-8065	K2Ti 6O13	5.952	6.088
mp-6698	Th ₂ Cu(PO ₄) ₃	94.794	2.523
mp-6748	Cs2Ti(Si2O5)3	97.322	3.767
mp-560348	K 6Nb4S2 5	7.345	1.887
mp-31034	ThF4	7.683	2.633
mp-865606	CsTaGeS ₅	342.591	7.844
mp-573340	Nb ₂ Se ₁₇ Cl ₁₂	7.8	2.662
mp-583762	Na ₃ W ₃ Cl ₁₃	167.611	1.927
mp-541155	VS4	73.238	3.387
mp-30954	GaI3	5.604	6.746
mp-554657	Na2Tl2B10O1 7	10.285	3.111
mp-541758	Ta ₂ Se ₁₇ Br ₁₂	7.18	3.077
mp-567734	AlAs ₃ (SeCl) ₄	11.968	1.935
mp-581963	K4Hf3Te17	8.674	1.714
mp-28684	Sb 1Se 8F3 5	110.513	3.438
mp-758985	RbTiPS ₅	276.494	4.444
mp-554702	NaZr ₂ NiF11	1000	9.393
mp-557289	TiP2ClsO3	21.72	4.185
mp-15141	NaZr ₂ ZnF ₁₁	174.022	9.722
mp-680498	RbTaPS 6	18.91	2.623
mp-6903	Na2Ca4ZrNbSi4O17F	1000	8.669
mp-559292	P @Pb3Xe11F 58	19.078	4.657
mp-4351	K2B2S7	5.326	7.665
mp-559602	$AgSb(S_{a}F_{3})_{2}$	5.425	5.965
mp-542630	P4S 9	13.52	7.557
mp-744764	Mn P (HO 6)4	24.557	18.046
mp-556837	AgAs(S aF 3)2	7.251	6.588
mp-559968	Na2NbAsO 6	43.798	5.883
mp-698567	Cr(Bi ₁ O ₁₂) ₂	29.149	12.56
mp-14651	Zr ₂ AgPdF ₁₁	151.913	15.531
mp-581877	Cs ₂ Zr(Si ₂ O ₅) ₃	5.575	5.288
mp-4649	PdSe ₂ O ₅	15.388	15.828
mp-582483	Na ₂ Th(PO ₄) ₂	707.888	8.262

mp-680048	RbW3Br7	5.237	3.851
mp-28075	K2Ti2O5	108.599	29.567
mp-28079	Na2Mn2S3	13.111	7.235
mp-557863	K2Ag4Pt3(NO2)12	1000	7.542
mp-505392	Ba ₃ V ₄ O ₁₃	21.692	9.037
mp-554626	Ba(BrO ₃) ₂	10.039	13.071
mp-640389	Cs2Th(PS3)3	29.473	8.789
mp-685928	Rb 5Tc 3S 7	1000	7.251
mp-555231	Ba ₃ Bi ₂ (PO ₄) ₄	37.493	7.803
mp-770948	Na ₃ CoPCO ₇	18.044	21.714
mp-28368	TlAuCl ₄	31.851	20.874
mp-559336	NaNb ₃ (TeO ₄) ₄	421.234	31.033
mp-676313	RbMo3Br7	9.011	4.937
mp-677246	Ba 6Ti2Nb10Si 8O 51	19.041	16.78
mp-18664	K4Ta2S11	7.005	20.739
mp-14935	P₃RhO 9	9.056	7.341
mp-554686	MgAs ₂ (XeF 9) ₂	1000	16.96
mp-721471	CuPH4O F	321.263	34.64
mp-569442	RbAuCl ₄	45.825	29.085
mp-761870	H C ₃ N c l	6.42	9.915
mp-28501	K2(NbCl3)3	21.383	16.066
mp-674338	K16Zr12Se 61	28.124	16.372
mp-505798	Na4TiSe4	11.083	14.4
mp-698655	KMgIn(MoO ₄) ₃	13.333	20.776
mp-755492	NaCuP ₂ O ₇	6.842	63.362
mp-862605	Rb4Zr6CCl1 8	18.411	28.79
mp-8989	Na ₂ P ₂ PdO 7	36.655	66.25
mp-6467	Na ₂ CuP ₂ O ₇	20.11	102.782
mp-680237	K10Th3(P\$\$18)2	8.846	29.878

MPID	Formula	Standard deviation	Ef (eV/ Å ²)
		of effective mass	
mp-10070	BaAg(PO ₃) ₃	41.465	0.355
mp-10408	K ₂ CN ₂	76.387	2.298
mp-10419	Na4ReN3	48.202	0.591
mp-10919	Rb ₂ PtC ₂	41.749	0.15
mp-11923	Rb2TaCuS4	143.032	0.033
mp-11924	Rb ₂ TaCuSe ₄	39.98	0.029
mp-12444	SrCuSF	96.916	0.455
mp-13445	Rb ₂ As ₂ Pt	375.636	0.113
mp-13738	CsCd(PO ₃) ₃	37.395	0.313
mp-13743	K3GaO3	52.059	0.191
mp-13792	KTaP4O13	31.553	0.205
mp-13985	Li2PdF 6	91.644	0.07
mp-13998	Na 5AlO4	56.541	0.214
mp-14128	K2HfF 6	32.977	0.201
mp-14364	Cs2LiAsO4	223.612	0.292
mp-14368	SbAsO 5	38.927	0.227
mp-14401	NaCaPO ₄	106.408	0.257
mp-14484	KNaLi ₂ (SO ₄) ₂	156.301	0.349
mp-14488	Li ₃ In ₂ (PO ₄) ₃	1000	5.59
mp-14511	NaAlGeO ₄	43.467	8.086
mp-14651	Zr_2AgPdF_{11}	306.05	15.951
mp-14653	$AgSb_2F_{12}$	207.196	0.013
mp-14734	CsCOF ₃	51.255	0.094
mp-14873	K4Nb \$\$i(P2O17)2	90.699	0.314
mp-14972	Ba ₃ Sc(BO ₃) ₃	1000	0.13
mp-15107	KSnAsO₅	132.049	0.226
mp-15108	RbSnAsO₅	198.784	0.237
mp-15141	NaZr ₂ ZnF ₁₁	1000	9.722
mp-15254	Li3AlF 6	420.613	0.487
mp-15395	CsBePO ₄	715.706	0.354
mp-15433	K2Ga2Sb3	34.195	0.065
mp-15437	MgP4O11	79.608	3.451
mp-15472	Ba4LiCu(CO 5)2	1000	0.264
mp-15558	Li3GaF 6	67.025	0.424
mp-15750	TaAgP ₄ O ₁₃	72.872	0.212
mp-15845	SrLi ₄ N ₂	223.471	0.274
mp-15865	RbScAsO ₄ F	36.393	0.189

Table S2 Data for the results shown in Figure 5-d (p-type doping) along with Material Project ID (MPID) and chemical formula.

mp-15919	BeAgPO ₄	37.5	11.375
mp-1602	SiS ₂	42.316	0.017
mp-16194	Rb ₂ SiO ₃	52.123	2.358
mp-16543	Cs3Cu5O4	59.506	0.351
mp-16828	Li ₃ B ₂ O ₁₂	39.151	0.272
mp-16980	Rb ₂ B ₄ O ₇	99.406	1.125
mp-17015	K4GeO4	38.661	0.721
mp-1707	BaN 6	119.849	0.297
mp-17077	K2YF 5	38.215	0.354
mp-17085	Rb ₂ Zr ₃ OF ₁₂	51.089	0.092
mp-17166	K2B4O7	123.576	1.34
mp-17229	RbBe ₃ ZnF ₉	64.722	0.242
mp-17256	Rb2Hf3OF12	54.403	0.096
mp-17297	Na2GeF 6	58.04	0.277
mp-17315	Zr ₃ Tl ₂ OF ₁₂	120.774	0.083
mp-17337	RbAsOF ₄	1000	3.077
mp-17394	NaYGeO4	57.394	0.549
mp-17401	Rb ₃ Sn ₄ Au	162.327	0.063
mp-17447	Sr10P & SO24	63.346	0.191
mp-17512	Zn(AuF4)2	36.972	0.227
mp-17516	Ca10P SeO24	142.124	0.216
mp-17539	KAsOF4	1000	2.789
mp-17650	KGaS ₂	38.93	0.081
mp-17693	SrCdP ₂ O ₇	59.739	1.885
mp-17730	K ₂ SnO ₃	47.597	0.283
mp-17761	CaGeO ₃	35.803	1.113
mp-17771	NaMg4(AsO4)3	65.098	0.377
mp-17850	K3NaTh2O6	38.186	0.516
mp-17886	K2Al2Sb3	31.445	0.068
mp-17888	K ₂ Zr ₃ OF ₁₂	297.491	0.057
mp-17941	Na ₂ B ₄ O ₇	852.73	0.536
mp-17951	$Cs_4Zn_3F_1o$	47.488	0.142
mp-18003	CsCuS ₄	55.095	0.034
mp-18065	BaCaAlF 7	355.368	0.537
mp-18183	YSnF 7	266.442	0.957
mp-18253	SrGa4O7	74.4	0.82
mp-18271	Na5Ti2Si2PO13	1000	1.809
mp-18343	BaMgP ₂ O ₇	60.512	1.427
mp-18347	KAlTe ₂	44.584	0.055
mp-18429	KAg(NO ₃) ₂	146.466	0.08
mp-18460	K ₂ Si ₆ GeO ₁₅	47.19	0.858
mp-18463	RbZnPO₄	814.522	0.306

mp-18464	Rb4GeO4	82.165	0.4
mp-18500	K3Sn4Au	63.539	0.068
mp-18582	Rb2Ti(Si2O 5)3	56.681	3.293
mp-18687	NbF 5	80.099	0.289
mp-18702	AgPO ₃	35.846	3.348
mp-18809	Li ₂ VGeO 5	41.355	0.468
mp-18832	K ₂ VO ₂ F ₃	41.004	0.157
mp-18860	Li ₂ VSiO ₅	77.685	0.658
mp-18935	K ₂ V(PO ₄) ₂	1000	0.637
mp-18953	NaV(OF)2	54.461	0.92
mp-18997	LiMnPO ₄	48.838	0.181
mp-19026	Na ₄ FeO ₃	97.224	0.706
mp-19037	K2W2O7	677.551	0.298
mp-19167	Rb2NiO2	1000	0.039
mp-19252	K2NiO2	1000	0.05
mp-19261	Na ₃ MnPCO ₇	52.405	0.377
mp-19334	Na4WO 5	48.527	8.514
mp-19388	BaNi2(AsO4)2	51.825	0.199
mp-19443	WO ₃	541.643	0.328
mp-19488	Rb2MnSO4F3	128.85	0.279
mp-19508	SrCr(Si ₂ O ₅) ₂	1000	0.314
mp-19512	BaV2(PO5)2	321.495	0.405
mp-19514	Sr ₂ CrO ₄	33.178	0.116
mp-19518	BaCr(Si ₂ O ₅) ₂	316.448	0.353
mp-19660	Sr ₂ V ₂ O ₇	75.99	0.091
mp-19893	PbCO ₃	33.228	0.257
mp-19956	Ba2InO3F	1000	0.098
mp-20352	Ba3In2O 6	756.838	0.095
mp-20546	Ba2In2O 5	1000	0.184
mp-2131	SrN 6	54.119	0.154
mp-21760	Rb2In2Sb3	34.439	0.057
mp-21835	$Cs_2In_2Sb_3$	38.878	0.053
mp-22216	In_2S_3	111.485	0.065
mp-22661	InAg(PS ₃) ₂	35.454	0.023
mp-22935	CsBrF	42.677	0.141
mp-22977	CsVCl ₃	941.685	0.114
mp-22978	Rb2MnCl4	1000	0.029
mp-22991	CsVI ₃	123.316	0.085
mp-23038	CsVBr ₃	370.219	0.096
mp-23162	ZrCl ₂	164.1	0.018
mp-23174	ReCl ₃	107.61	0.136
mp-23184	BCl ₃	406.905	0.009

mp-23189	BI3	257.1	0.012
mp-23225	BBr ₃	397.264	0.01
mp-23267	BeCl ₂	124.691	0.013
mp-23403	SbIF ₅	1000	0.34
mp-23434	Al2CuCl 8	33.103	0.241
mp-23515	K2CoCl4	45.879	0.069
mp-23550	KBrF₄	40.266	0.289
mp-23568	XeN2(OF4)2	112.556	0.065
mp-23576	CsSbClF ₃	60.886	0.086
mp-23598	SIO ₃ F	59.668	0.159
mp-23634	KSbClF3	54.807	0.059
mp-23660	KNa22C2S sClO42	1000	0.15
mp-23701	CaB aH4O1 5	268.138	2.556
mp-23702	LiH ₂ N	148.954	0.527
mp-23748	MgBHO ₃	33.791	0.642
mp-23776	BeH (ClO ₂) ₂	34.684	0.392
mp-23780	Na ₃ H(SO ₄) ₂	60.694	0.684
mp-23800	KHSO4	182.417	0.255
mp-23846	KHF ₂	40.637	0.228
mp-23904	BaH4O3	37.764	0.109
mp-24007	Rb ₂ HBrO	118.278	0.432
mp-24022	RbH3(SeO3)2	319.111	0.055
mp-24030	ZrP2(HO3)2	34.289	0.403
mp-24058	AgBH2OF4	94.627	0.034
mp-24072	AgH₅S₂O 9	192.166	0.501
mp-24097	Mg3Si2H4O9	874.274	0.072
mp-24112	Rb2ZnH12(SO 7)2	45.946	0.97
mp-24118	H10SO 8	64.247	0.253
mp-2414	SO ₃	46.657	0.009
mp-24141	CsHSeO4	63.503	0.052
mp-24144	Na 5CH4(C2O7)2	43.771	0.279
mp-2416	YF3	38.522	0.092
mp-24160	BH3NF3	43.809	0.415
mp-24193	NaH ₃ O ₂	233.038	0.037
mp-24196	Tl2CuH12(SO 7)2	287.037	0.596
mp-24230	HCNO	106.142	1.843
mp-24302	CdAs ₂ HF ₁₃	169.244	0.165
mp-24308	AlSiH C ₃ Cl ₂ O	38.546	0.557
mp-24340	K ₃ GeH ₃ S ₃ O ₂	41.239	0.045
mp-24428	KH2N	227.471	0.066
mp-24460	MgH (SO4)4	31.603	0.505
mp-2452	P2O 5	276.733	0.248

mp-24656	YH3(SO4)3	88.053	0.118
mp-24683	RbZn ₂ P ₂ HO ₈	269.408	0.544
mp-24747	Na3H a Rh	50.151	0.247
mp-24757	AlBP2H5NO9	89.354	0.473
mp-24761	RbGaBP2HO9	48.344	0.51
mp-24822	Na 5Al3H14	45.009	0.167
mp-25305	Y2Ti2S2O5	104.897	0.394
mp-2632	T1F3	32.158	0.045
mp-27094	LiSn ₂ (PO ₄) ₃	39.449	6.108
mp-27169	KTa 5O13	93.502	0.177
mp-27212	Sb2IF1 5	516.296	0.293
mp-27213	AuBr ₃	184.201	0.208
mp-27256	Sb2(S2O7)3	34.965	1.047
mp-27288	RuXeF 7	889.614	3.571
mp-27297	ReCl4O	48.064	2.425
mp-27307	Na2ZrF 6	609.02	0.29
mp-27308	SbBrF₃	42.724	0.251
mp-27322	Nb ₂ Te ₃ O ₁₁	143.941	0.327
mp-27344	Be(BH4)2	52.712	0.116
mp-27345	Na3BiO4	38.823	11.373
mp-27349	BSF 7	383.077	0.399
mp-27353	SbCl ₂ F ₃	1000	3.807
mp-27376	Rb Si10O23	72.924	0.226
mp-27384	AgIO ₃	59.98	0.044
mp-27389	KSb ₂ F ₇	98.386	0.025
mp-27396	NiCl ₂	114.004	0.029
mp-27399	SbBr ₃	32.221	0.012
mp-27425	Sr(HO)2	45.673	0.106
mp-27452	Al2PdCl 8	116.934	0.319
mp-27472	NbSbF10	102.484	0.292
mp-27473	Sb ₂ TeF ₁₄	1000	0.193
mp-27556	CsNbO3	82.062	0.351
mp-27579	Na ₄ P ₂ O ₇	257.254	0.27
mp-27648	Te ₂ Br	48.04	0.098
mp-27664	TiPC19	55.331	0.177
mp-27674	K 5A S3O1 0	121.894	0.521
mp-27692	BaB4O 7	60.276	1.135
mp-27697	ThI ₄	66.134	0.658
mp-27702	InClO	38.623	0.011
mp-27786	SbAs ₂ Cl ₁₃	41.19	0.042
mp-27792	K2S 5O1 6	1000	0.403
mp-27849	TiBrN	1000	0.016

mp-27850	TiNCl	1000	0.015
mp-27863	AlClO	38.261	0.012
mp-27866	MoS ₂ Cl ₃	68.11	2.035
mp-27915	K ₂ BeO ₂	1000	1.496
mp-27921	Ti ₂ PCl ₁₃	68.51	0.08
mp-27988	IF 7	252.788	0.004
mp-27998	KNb3O8	134.539	0.415
mp-28037	Mo ₂ SBr ₂	73.71	0.126
mp-28064	SbS cl3	57.507	5.73
mp-28065	ThNCl	56.654	0.063
mp-28066	ThBrN	65.802	0.044
mp-28085	KAs ₂ F 7	56.973	0.645
mp-28125	H11NF 8	299.72	0.32
mp-28163	K ₂ PdF ₄	39.728	0.086
mp-28174	Pd(SCl ₃) ₂	93.732	0.34
mp-28185	TaClF 8	70.05	0.243
mp-28202	K3NO4	37.314	0.092
mp-28204	CsH O4	49.284	0.402
mp-28211	IrS ₃ Cl ₁₁	123.291	0.049
mp-28233	MnCl ₂	41.814	0.019
mp-28257	SOF ₂	47.62	0.007
mp-28270	KCuS	1000	0.039
mp-28273	K ₃ CuO ₂	45.875	0.12
mp-28306	MnBr ₂	39.541	0.022
mp-28330	TeAuCl ₇	1000	0.211
mp-28375	Ta ₂ AgF ₁₂	361.697	0.553
mp-28387	PAuC18	206.169	0.075
mp-28428	K ₃ Nb ₂ Se ₁₁	407.069	0.265
mp-28479	Sc_2CCl_2	1000	0.011
mp-28541	Bi2P4O13	780.371	0.963
mp-28575	W(S4Cl3)2	86.047	0.137
mp-28577	RbBrF4	87.135	0.006
mp-28627	K4Br2O	152.929	0.024
mp-28634	KI3F1 6	569.98	0.164
mp-2865	K2CuF4	193.04	0.046
mp-28676	$S_2O_5F_2$	42.764	0.289
mp-28683	Ta(ICl)2	118.127	0.022
mp-28684	Sb 3Se 8F3 5	178.307	3.438
mp-28726	KYF4	231.912	0.086
mp-28744	Y4OsBr4	63.002	0.133
mp-28778	KScF4	42.74	0.826
mp-28788	Ba (AuO 6)2	56.272	0.264

mp-28804	TcO ₂ F ₃	80.725	0.385
mp-28859	K ₂ HgS ₂	493.024	0.037
mp-28883	GeP ₂ O ₇	51.775	0.258
mp-28913	Ti CCl14	96.222	0.203
mp-28974	TiF4	137.524	0.237
mp-28985	SbSeCl ₉	98.748	0.298
mp-29030	ThTl ₃ F 7	48.71	0.085
mp-29040	Li ₃ Zr ₄ F ₁ 9	872.779	1.138
mp-29085	Sr ₅ Zr ₃ F ₂₂	81.824	0.302
mp-29095	H4SO 5	32.859	1.46
mp-29114	Re ₃ Te ₄ Cl ₅	54.136	0.117
mp-29144	KTe ₂ F ₉	34.814	0.165
mp-29149	Li ₄ NCl	64.134	0.239
mp-29193	Nb ₂ Se ₄ O ₁₃	44.935	0.347
mp-29226	Ca ₃ Ga ₄ O ₉	38.803	0.399
mp-29264	SIC17	33.727	0.124
mp-29274	P2PdO 6	248.025	0.251
mp-29276	Cd ₂ P 6O _{1 7}	94.408	3.713
mp-29300	Ga2CuCl8	258.235	0.231
mp-29330	K2H5F7	409.557	0.686
mp-29363	Rb ₃ GaP ₂	33.943	0.091
mp-29369	Sb I F29	65.329	0.233
mp-29386	K & n ₂ Se 7	44.03	0.212
mp-29391	SbCl ₃ F ₂	298.863	0.117
mp-29411	Na2B2S 5	254.298	0.15
mp-29449	Rb4Cu5Cl9	720.388	2.207
mp-29568	RuS₃Cl 8	97.974	0.229
mp-29693	Rb ₂ AgCl ₃	45.127	0.038
mp-29694	KAuBr ₄	63.043	0.126
mp-29704	Cs(SO ₂) ₂	166.096	1.002
mp-29794	Ba ₂ PdF 6	786.129	0.312
mp-29871	Na4SeO 5	65.976	0.993
mp-29877	K ₂ ReH ₉	44.463	0.323
mp-29878	Re ₂ PCl ₁₃	49.037	0.122
mp-29940	SbClF10	129.999	0.012
mp-29966	NOF	38.936	0.008
mp-29970	Cs3Sb5O14	79.605	0.21
mp-30003	AuSO ₄	42.77	0.19
mp-30005	Rb ₆ Br ₄ O	56.333	0.06
mp-30010	AsKrF 7	520.887	0.085
mp-30011	SbKrF 7	236.739	0.079
mp-30012	BiKrF 7	98.53	0.107

mp-30023	Ba(AlCl ₄) ₂	54.072	0.178
mp-30103	AuF₅	49.4	0.009
mp-30120	K3BiO4	51.776	0.672
mp-30130	Bi4I2O5	51.695	0.618
mp-30139	BeBr ₂	89.954	0.013
mp-30142	Be4N 6O1 9	1000	0.309
mp-30213	Sb2BrF15	98.469	0.226
mp-30315	Ca ₃ BN ₃	71.811	0.199
mp-30320	RbHfF₅	43.961	0.178
mp-30325	In2(Se2O 5)3	34.521	1.105
mp-30934	As(S aI)3	40.519	0.035
mp-30943	MgPSe ₃	607.328	0.021
mp-30979	GaPS ₄	42.264	2.158
mp-30983	CaP ₄ O ₁₁	40.226	1.849
mp-30989	Sn(NO ₃) ₄	102.293	1.874
mp-31040	NbCl4	311.268	1.383
mp-31050	Cl ₂ O ₇	50.657	0.008
mp-31060	Rb4(BS)9	31.243	0.323
mp-31073	Na ₃ B ₂ O ₁₂	58.367	0.501
mp-3125	K ₃ Zn ₂ F ₇	212.99	0.042
mp-31373	H18SO12	1000	1.694
mp-3247	Cs ₂ TiS ₃	38.701	0.144
mp-3281	Al 5BO 9	58.979	0.53
mp-3283	RbNbO3	37.601	2.779
mp-3318	Na ₂ BeF ₄	32.236	0.241
mp-34022	Mg ₂ SnO ₄	57.419	0.264
mp-3416	Na3AlF 6	62.631	0.896
mp-3637	YOF	75.031	0.154
mp-36381	Sn(PS ₃) ₂	48.48	0.142
mp-3765	Sr(PO ₃) ₂	434.796	0.299
mp-3775	Na2SiF 6	42.421	0.405
mp-3779	CrSiTe ₃	92.944	0.039
mp-3788	SrAl4O 7	88.266	1.765
mp-3848	BaGe ₄ O ₉	31.846	0.439
mp-3870	Sr2Nb2O7	84.024	0.35
mp-3881	BaZnF₄	45.195	0.277
mp-39140	Na4Al3Si3HO13	481.206	0.487
mp-3928	Na 5P 3O1 0	59.727	0.407
mp-3963	K ₂ CO ₃	53.555	0.124
mp-3975	K2TaF7	71.01	0.114
mp-39823	Na Al Si CO27	1000	0.288
mp-4009	BaPdS ₂	43.652	0.135

mp-40144	SiNiH12(OF)6	36.413	0.335
mp-40575	LiNi2P4H3O14	33.208	1.102
mp-4138	Rb ₂ CO ₃	43.842	0.112
mp-41473	CsTiNiOF 5	43.314	0.45
mp-4185	Na ₃ ScF 6	42.774	6.116
mp-43068	Na3Al3Si3AgBrO12	330.145	0.315
mp-4531	NaNO ₃	233.466	0.127
mp-4649	PdSe ₂ O ₅	97.616	15.793
mp-4661	ScOF	113.203	1.87
mp-4691	Ag ₂ CO ₃	36.994	0.276
mp-4758	K2NbF 7	95.126	0.097
mp-5039	KPO3	62.174	0.483
mp-504427	Ti ₃ PbO 7	241.862	0.364
mp-504894	MgH12SeO9	63.329	0.12
mp-505234	BaP2PbO7	84.65	0.465
mp-505260	Te10M03I10	31.917	1.187
mp-505368	As ₂ Pb ₃ O ₈	37.497	8.354
mp-505392	Ba ₃ V ₄ O ₁₃	69.252	9.036
mp-505400	BaZr ₂ F ₁₀	45.541	0.82
mp-505727	NClO	49.827	0.007
mp-505771	K2NaH (CO4)2	110.91	0.08
mp-505794	ScH 6N2Cl3	79.274	2.902
mp-505798	Na4TiSe4	50.041	14.416
mp-505814	CsBa2Nb3O10	1000	0.521
mp-5073	RbNO3	151.791	0.183
mp-510018	Rb2CuH12(SeO 7)2	1000	0.312
mp-510075	Cs 7Au 5O2	1000	0.04
mp-510076	Rb 7Au 5O2	1000	0.047
mp-530449	Ca3(AsO4)2	159.639	0.247
mp-530524	Zr3TlF15	1000	1.293
mp-531826	Li ₂ PtO ₃	34.665	0.326
mp-532315	Sr17(Ta5S21)2	38.198	0.787
mp-5348	MgCO ₃	35.699	0.328
mp-5401	Sr ₂ B ₂ O 5	39.374	0.334
mp-540584	K ₂ PdO ₂	68.439	0.089
mp-540629	Al ₂ Te ₂ Cl ₇	57.275	0.187
mp-540656	$Sb(Sal)_3$	42.345	0.03
mp-540668	BS ₂	488.003	0.718
mp-540760	FePC18	51.436	0.065
mp-540862	Ba2CaMgAl2F14	126.218	0.165
mp-540868	Ca ₃ Si(ClO ₂) ₂	1000	0.34
mp-540995	Rb 5Nb3OF1 8	106.425	0.27

mp-541114	Sr2RhF 7	67.681	0.134
mp-541134	TeAuBr₀	41.207	0.117
mp-541240	Sb ₃ O ₂ F ₅	31.821	2.039
mp-541393	K ₃ NaRe ₂ O ₉	68.739	0.101
mp-541415	KH 5S2O 9	294.862	0.281
mp-541459	KSnPO₅	40.672	0.241
mp-541656	AuCl ₂	32.778	0.169
mp-541682	K3AlAs2	174.942	3.335
mp-541684	K3AlP2	282.448	2.887
mp-541747	MgGeH12(OF)6	64.462	1.824
mp-541758	Ta ₂ Se ₁₇ Br ₁₂	97.06	3.078
mp-541766	Rb ₃ InP ₂	32.043	3.071
mp-541771	Bi4RuI2	173.3	0.107
mp-541772	Bi4RuBr2	136.43	9.824
mp-541867	CsRe3(O3F 5)2	1000	0.878
mp-541932	H13S2N3O8	136.189	0.383
mp-542085	Sr ₂ GeO ₄	47.668	1.8
mp-542129	CsAlBP ₂ HO 9	32.003	0.683
mp-542130	RbAlBP ₂ HO ₉	49.159	0.649
mp-542148	Sb ₂ N ₅ F ₁₁	177.176	0.308
mp-542168	Cs2CoSiO4	1000	0.27
mp-542417	Cs2MgH12(SO7)2	44.707	0.99
mp-542451	Rb2NaAl3F12	317.444	0.247
mp-542662	Ga ₂ Te ₂ Cl ₇	49.858	0.211
mp-542863	Ca NbSi4O17F	209.533	1.229
mp-542931	Bi2B \$O1 5	1000	2.505
mp-546279	ScBrO	49.938	0.014
mp-546285	NbI ₃ O	172.674	1.072
mp-547244	SrBiClO ₂	153.051	0.262
mp-5476	Cs4Mg3F10	34.135	0.178
mp-5504	BaCO ₃	74.578	0.283
mp-551456	Ba ₂ CuClO ₂	63.313	0.228
mp-552234	SrBiBrO ₂	49.199	0.251
mp-552537	Sr ₂ CuBrO ₂	235.363	0.252
mp-552934	Ba2CuBrO2	49.444	0.226
mp-554012	SClO ₂ F	33.774	0.116
mp-554016	K4Ti2PO4F9	643.841	1.237
mp-554111	Ti3Tl3(PO4)5	678.824	0.196
mp-554129	Br ₃ N(O ₂ F 5) ₂	1000	0.168
mp-554146	K14In4O13	419.086	5.769
mp-554147	$Rb_2Nb_2P_2S_{11}$	1000	0.291
mp-554157	KNaZnP2O7	56.566	2.005

mp-554160	K ₂ CuP ₂ O ₇	37.275	0.197
mp-554195	Sb3As2S14(IF 8)3	31.132	0.482
mp-554259	SrAgB ₁₂	1000	0.31
mp-554359	Cs ₂ Si ₃ SnO ₉	38.868	0.203
mp-554379	AsXeF11	1000	0.227
mp-554432	ReSbOF10	463.54	0.16
mp-554572	K3NbP2O9	69.404	0.543
mp-554605	Rb2SbCl3F2	1000	0.667
mp-554673	KZnB(PO ₄) ₂	88.009	0.285
mp-554686	MgAs2(XeF9)2	223.001	16.951
mp-554701	SbP(OF ₃) ₂	64.341	0.393
mp-554702	NaZr2NiF11	420.641	9.413
mp-554754	Na ₂ Zn(SO ₄) ₂	53.055	0.816
mp-554805	Sr ₃ Se ₃ (ClO ₄) ₂	153.954	0.127
mp-554808	SnH22(Cl3O5)2	935.584	0.536
mp-554819	MgP4(C15O3)2	1000	0.531
mp-554842	Cs Si3AgO9	47.377	0.178
mp-554948	NaI(OF)2	40.447	0.222
mp-555005	Na3Mg2P5O16	116.266	0.371
mp-555059	TcSb(OF ₄) ₂	359.496	1.834
mp-555076	KNaSnF 6	159.092	0.229
mp-555082	CsLi ₅ (BO ₃) ₂	40.755	5.418
mp-555113	Rb ₃ Cu ₂ (BiS ₂) ₅	141.766	0.117
mp-555118	NaPO ₃	57.932	0.275
mp-555122	Rb2Pd(NO3)4	101.129	0.446
mp-555155	KNa2Y(Si2O 5)3	60.384	0.371
mp-555203	Sr 5B3ClO 9	234.009	0.184
mp-555207	BN(OF ₂) ₂	34.134	7.495
mp-555212	Ba ₂ InBrO ₃	1000	0.028
mp-555230	Rb ₂ YGa(SiO ₃) ₄	1000	4.847
mp-555231	Ba3Bi2(PO4)4	53.688	7.79
mp-555300	Na ₂ Zn ₃ (SiO ₄) ₂	69.291	1.275
mp-555305	NaNb(OF)2	403.768	1.078
mp-555321	BaNiF ₄	169.746	0.304
mp-555376	CsAu(SO ₄) ₂	66.199	0.271
mp-555392	K NaAu2IO 8	652.967	4.334
mp-555424	CaNb2(P2O 7)3	44.872	0.4
mp-555467	Sr2AlCO3F 5	159.373	0.642
mp-555488	$Na 5AlP_2(O_4F)_2$	66.696	0.202
mp-555490	KRe ₂ O ₄ F ₇	96.279	0.355
mp-555526	RbAg(NO ₃) ₂	232.719	0.066
mp-555546	MgAs2(XeF5)4	108.784	0.062

mp-555609	Sr Zn4(CuO 7)2	801.71	0.487
mp-555629	SbTe(ClF ₂) ₃	69.559	0.011
mp-555652	K ₂ Zn(SO ₄) ₂	37.364	0.536
mp-555661	Cadn(PO4)7	33.99	0.365
mp-555805	AlSC17	36.463	0.031
mp-555825	Na4Sc2Si4O13	36.896	0.341
mp-555862	CsZr(NO ₃) ₅	77.688	0.147
mp-555866	K 6Be4C 6O1 9	44.85	0.263
mp-555958	Ba2Li3(PO3)7	106.159	0.804
mp-555980	Ba2Zn3(PO3)10	34.474	99.99
mp-556024	Na2TiF 6	47.52	0.409
mp-556061	CsSb ₂ F ₁₁	123.704	0.285
mp-556078	MgAs ₂ (XeF s) ₂	64.55	0.041
mp-556117	Ga3Pb 5F1 9	69.078	0.11
mp-556122	BaCa(PO ₃) ₄	42.051	2.278
mp-556171	CdP2Xe5F22	477.201	0.104
mp-556234	Rb3Sb5O14	39.634	0.224
mp-556244	Xe ₂ NO ₂ F ₁₃	44.916	0.055
mp-556258	Na ₃ BeAl(SiO ₄) ₂	246.29	0.324
mp-556282	Ba2AlInO 5	1000	0.179
mp-556325	TeAs(ClF ₂) ₃	39.371	0.543
mp-556341	Ti4S Br 6O	32.997	0.193
mp-556442	Tc ₂ O 5F ₄	1000	0.318
mp-556463	KGe2BO6	83.005	0.232
mp-556518	K2Pd(NO3)4	633.723	0.077
mp-556521	KNa Pb2O 7	91.752	0.183
mp-556522	K3Cu2(BiS2)5	497.895	0.183
mp-556539	BaSb ₂ Xe F ₂₂	236.767	0.314
mp-556546	K2NiF4	1000	0.004
mp-556577	Na ₃ Sb ₃ (AsO ₇) ₂	63.609	0.931
mp-556637	Ba Na2Nb2P2O1 7	721.98	0.23
mp-556653	Cd2BiAsO6	217.158	0.35
mp-556655	Li2AlBO4	78.779	0.681
mp-556676	Na3Al2(AsO4)3	42.72	1.396
mp-556689	KZrF ₅	176.068	3.14
mp-556709	Na2ZrSiO 5	1000	4.371
mp-556756	KSb ₂ PO ₈	50.906	0.372
mp-556785	RbTeF₅	133.757	0.072
mp-556801	Na3B @PO13	793.714	0.299
mp-556834	RuCl(OF ₃) ₂	46.212	1.787
mp-556996	K2LiAlF6	36.08	0.416
mp-557022	Sb sCl ₂ O ₁₁	40.821	1.939

mp-557090	Bi2Au 5F21	35.306	0.11
mp-557132	Os2O3F 7	88.335	0.42
mp-557171	Na ₂ Cu(PO ₃) ₄	87.342	0.376
mp-557180	CaAs ₂ (XeF 5)4	59.884	0.298
mp-557237	K 5In3(SiO3)7	133.558	0.27
mp-557250	HgINO ₃	146.947	0.013
mp-557256	RbP3PbO9	90.734	0.574
mp-557260	RbSb ₂ F ₇	159.701	0.205
mp-557289	TiP ₂ Cl ₃ O ₃	93.903	4.195
mp-557301	K2Ti(Si2O5)3	37.215	1.043
mp-557352	CaP2XesF22	682.362	0.103
mp-557355	Rb ₂ SiP ₄ O ₁₃	193.087	0.236
mp-557359	Cs2Al2Sb2O7	33.44	0.242
mp-557417	As2Cl3OF 5	129.94	0.329
mp-557432	GeClO ₂ F 5	495.14	0.269
mp-557451	CsReOF 6	955.691	0.089
mp-557470	$K_2Sb_2S(O_2F_3)_2$	68.153	1.772
mp-557531	Pb ₂ S(O ₂ F) ₂	48.772	3.899
mp-557577	K ₃ ScSi ₂ O ₇	167.742	0.2
mp-557628	AsS(IF3)2	236.93	0.406
mp-557650	Sr ₃ P (N ₄ O ₃) ₂	170.919	0.535
mp-557662	Ca2Mg Si (O11F)2	95.257	1.43
mp-557772	CsNiF3	1000	0.11
mp-557778	RbNbSiO5	34.827	0.273
mp-557792	HfSC1 ₆ O	247.825	1.161
mp-557809	SbSCl ₉	153.663	6.751
mp-557856	BCl(OF ₂) ₂	98.556	0.226
mp-557874	KAg(PO ₃) ₂	32.8	1.462
mp-557926	CdAs ₂ (XeF 5)4	601.337	0.069
mp-558063	KCu(BiS ₂) ₂	92.807	0.153
mp-558114	Sr4NbAlO8	61.155	0.422
mp-558149	BF3	53.123	0.141
mp-558153	Ba4Nb2(OF4)3	698.417	1.204
mp-558160	NaYCO ₃ F ₂	1000	0.451
mp-558162	RbP(OF)2	35.392	0.146
mp-558208	RbInAs ₂ O ₇	66.426	0.369
mp-558227	K2RbMn2F7	1000	0.049
mp-558235	CaTaF 7	1000	0.19
mp-558240	K3Al4P2O & 9	739.267	1.139
mp-558243	Ba ₂ InClO ₃	1000	0.099
mp-558330	IClOF	424.422	0.011
mp-558383	Na ₂ CrF ₄	69.802	0.547

mp-558396	$Rb_2Te(H_{6}O_5)_2$	44.763	0.649
mp-558430	BaB ₂ F 8	41.133	13.549
mp-558480	$K_2P_2O_{5}F_2$	46.674	0.1
mp-558514	RbZrCdF 7	184.495	0.136
mp-558523	PAuClF ₃	271.612	0.213
mp-558603	K2Si4O9	42.575	0.685
mp-558607	K3BSb4O13	39.33	0.646
mp-558660	Mg2BiPO6	112.279	0.546
mp-558692	Sb ₂ ClO ₂ F ₁₁	1000	0.751
mp-558725	Ba sRu2Br2O 9	132.837	0.027
mp-558861	KI(OF)2	124.981	0.052
mp-558924	Na 5Ga3F14	59.738	7.488
mp-558938	Zn4SiTePbO10	38.742	0.24
mp-558967	K ₃ Ta ₂ S ₁₁	489.795	0.274
mp-559062	KP(OF)2	38.438	0.223
mp-559064	SnP2(Cl 5O)2	559.659	0.207
mp-559068	Na ₂ Pd(SeO ₄) ₂	121.657	0.059
mp-559115	P2RhClF 6	573.669	0.257
mp-559150	Na 2rP4ClO16	198.398	4.687
mp-559151	BaSrTa ₂ O ₇	66.558	0.423
mp-559182	P2IrClF 6	855.904	0.708
mp-559228	Rb ₂ HfS ₄	52.628	0.3
mp-559281	Na ₃ Cr ₂ (PS ₄) ₃	39.881	0.086
mp-559292	P @Pb3Xe11F 58	1000	4.657
mp-559309	K ₃ ZnNCl ₄ O ₃	1000	0.112
mp-559314	Na5TiP2OsF	70.316	0.501
mp-559378	Ba 5Ta2Cl2O 9	1000	0.031
mp-559493	TiPC1 O	43.309	0.14
mp-559516	K ₃ Nb(SO ₄) ₄	43.967	0.193
mp-559533	NaLiCO ₃	33.938	0.103
mp-559537	Ca4P 6O1 9	132.46	1.134
mp-559568	K ₂ Se ₂ O ₅	86.791	0.096
mp-559610	Rb2NaAl2(PO4)3	1000	0.239
mp-559710	NaInAs ₂ O ₇	62.737	0.873
mp-559724	Ta4S 9Br 8	124.45	0.197
mp-559759	CaAlBO ₄	143.977	0.577
mp-559783	Na ₃ B(PO ₄) ₂	78.997	0.27
mp-559786	NaAs ₄ BrO ₆	46.229	0.207
mp-559790	K2Nb3Cl +O 5	127.361	1.499
mp-559894	Sb ₂ Te ₂ O ₉	122.821	0.616
mp-559923	Nb(PS ₄) ₂	194.05	0.231
mp-559984	Rb &AlAu ₃ O ₄	50.458	0.07
1 1	1	-	1

mp-560005	TlRe ₃ (S ₂ Cl) ₂	107.313	0.163
mp-560008	PNF ₂	120.224	0.266
mp-560032	NaNb2AsO 8	42.964	2.277
mp-560120	Na ₂ Pd(NO ₃) ₄	94.265	0.22
mp-560121	H 5CNO3	58.023	0.253
mp-560144	K₂RuBr₅NO	49.182	0.101
mp-560146	Ba17Y16Zn aPt4O 57	394.031	0.335
mp-560208	K3NbAs2O9	200.748	0.344
mp-560216	Cs2GeP4O13	73.782	0.213
mp-560222	Na ₃ SO ₄ F	227.406	38.747
mp-560310	SbPOF 8	298.406	0.562
mp-560314	In2H10S3O1 7	57.164	0.302
mp-560320	KBa2(PO3)5	50.167	25.678
mp-560322	K2RuN3Cl3O5	159.586	1.463
mp-560324	Rb3Hg2S3ClO12	82.828	1.793
mp-560348	K 6Nb4S2 5	97.358	1.886
mp-560352	SrP2(XeF 6)3	1000	1.472
mp-560423	KBS4(ClO3)4	395.706	0.601
mp-560449	K3Ni2F7	481.564	0.043
mp-560459	Rb3Al2(PO4)3	1000	0.144
mp-560515	K4Ru2Cl10O	1000	0.11
mp-560535	K4Sr(SiO3)3	86.342	0.434
mp-560555	Li Bi2PdO10	71.588	0.306
mp-560578	RbTeNO ₃ F ₄	108.544	0.076
mp-560585	P3IrO9	48.227	2.831
mp-560587	Rb2Sb 3O13	517.656	0.284
mp-560595	Ca2AsClO4	115.857	0.193
mp-560601	K2CuS(ClO2)2	139.292	0.084
mp-560629	K3Al2(PO4)3	1000	0.187
mp-560632	NaGaSiO4	34.954	0.335
mp-560666	K4Nb2Se11O	47.26	0.07
mp-560675	K 6Cu(SiO4)2	426.588	0.206
mp-560692	K4Nb 6O1 7	1000	0.167
mp-560732	BaNaZrF 7	35.021	0.312
mp-560739	K3Li3TeO 6	45.633	0.224
mp-560745	AuN 5O14	67.498	1.168
mp-560884	TaSC1 O	62.597	0.088
mp-560891	SnP ₂ Cl ₃ O ₃	359.885	0.76
mp-560919	Na 5Y(CO3)4	1000	0.429
mp-560921	NaAlAs ₂ O ₇	51.672	1.582
mp-560928	Sb ₂ IBr ₂ F ₁₁	306.673	0.142
mp-560966	K2RuNCl5O	57.542	0.182

mp-561011	Li ₂ Ta ₂ (OF ₂) ₃	1000	0.05
mp-561058	Na ₃ Ga(PO ₄) ₂	48.779	0.936
mp-561153	XeF ₃	97.709	0.132
mp-561176	Sb ₂ POF ₁₃	1000	0.514
mp-561179	Ba ₂ CuIO ₂	31.932	0.073
mp-561197	TaF₅	60.467	0.302
mp-561222	K2HgBr2(NO6)2	859.12	0.083
mp-561226	BTe ₃ (OF 5) ₃	122.966	0.008
mp-561243	Sr ₂ CuClO ₂	971.78	0.254
mp-561259	Na3NbOF 6	79.154	0.099
mp-561283	CdGaH14O7F5	116.834	0.832
mp-561317	Rb2NiF4	960.056	0.03
mp-561369	K3Bi2(AsO4)3	47.834	1.006
mp-561396	Li3CrF 6	304.38	0.357
mp-561407	RbGaS ₂	92.366	0.046
mp-561424	KAlF4	34.914	2.419
mp-561441	Y2GeO5	44.372	3.241
mp-561486	Na2Mg (PO4)4	54.112	4.281
mp-561491	KNaMg2Si4(OsF)2	37.27	1.192
mp-5616	Sr ₂ P ₂ O ₇	126.608	0.459
mp-561647	Cs ₂ TeOF ₄	110.542	0.223
mp-561827	Cs3TlF 6	283.259	0.045
mp-562102	K2S2O7	102.082	0.347
mp-562441	Cs ₃ AlO ₃	65.532	0.629
mp-562442	Cs ₂ SeO ₄	35.192	0.04
mp-562569	CsPPbS ₄	62.471	0.031
mp-562854	CsNb2BiO7	48.85	0.555
mp-562977	RbNbS2O9	165.859	0.29
mp-567441	HfIN	391.693	0.011
mp-567558	CsAgCl ₂	1000	0.021
mp-567734	AlAs ₃ (SeCl) ₄	33.796	1.937
mp-567743	AlSb ₂ (TeCl ₂) ₂	200.512	1.652
mp-5680	Ca(PO ₃) ₂	59.073	0.485
mp-568136	RbVBr ₃	309.137	0.096
mp-568252	Rb2Hg2PdCl8	42.372	1.636
mp-568346	HfBrN	51.766	0.015
mp-568350	Rb ₂ ZnCl ₄	46.968	0.048
mp-568540	Ag 5Hg4P 6Cl 5	78.325	0.549
mp-568644	K InSe 7	84.025	0.066
mp-569050	NaW 6NCl1 8	58.582	0.033
mp-569386	P ₃ NCl ₁₂	185.278	2.406
mp-569442	RbAuCl ₄	35.445	29.085

mp-569787	Al(BH ₄) ₃	40.979	0.235
mp-569984	$Cs_3Au_2Br_{11}$	45.806	0.086
mp-570021	Ti 6Tl 5AgSe2 7	31.805	0.119
mp-570193	NaAuCl ₄	96.231	0.397
mp-570248	NaC ₂ N ₃	732.874	0.396
mp-570315	PBr ₂ N	138.051	0.103
mp-570411	K ₁₂ In ₂ Se ₉	35.569	0.937
mp-570453	$Ba_4W(N_2Cl)_2$	117.175	0.04
mp-570530	Cs(BCl) 6	209.746	0.184
mp-570531	NbP2NCl12	63.028	0.209
mp-570703	Ca(AlCl ₄) ₂	35.737	0.091
mp-570873	Nb(Te ₂ I ₃) ₂	160.347	1.471
mp-570966	ZrP2NCl11	551.611	0.137
mp-571250	TaP2Se2Cl5	154.827	0.906
mp-571324	CNC1	139.842	0.116
mp-571464	RbPSe ₃	254.303	0.061
mp-572149	Cs2Al(NO3)5	61.184	0.094
mp-572634	Al2AgCl5O	125.095	0.128
mp-572794	ReP(Cl ₂ O) ₃	341.005	0.7
mp-573373	PIC18	115.338	0.069
mp-573429	Cs 5Bi(MoO4)4	557.382	0.357
mp-573751	AlTeC17	153.106	0.754
mp-574571	Rb3YCl6	40.556	0.243
mp-579086	KSrNb2O aF	1000	0.551
mp-581644	Y ₂ Si ₂ O ₇	1000	0.449
mp-581862	Cs2NaAl(PO4)2	332.558	0.139
mp-581868	NaY(IO3)4	359.643	0.242
mp-581877	Cs2Zr(Si2O5)3	57.396	5.294
mp-581887	Ca2As4Xe5F34	63.033	5.635
mp-581955	CsSi2SbO7	197.604	0.25
mp-581967	Nb2O 5	1000	2.407
mp-582185	Cs12Nb(In2As3)3	67.481	0.081
mp-5824	Hg ₂ NO ₄	83.125	0.135
mp-5860	K ₂ HgO ₂	265.232	0.245
mp-6032	SrSi ₂ (BO ₄) ₂	53.015	0.656
mp-6044	Sr 6B(PO4) 5	43.039	0.478
mp-607454	AlC3(NCl2)3	1000	3.602
mp-607931	Cs ₃ NaLi ₂ (BO ₃) ₂	49.754	0.263
mp-607987	CsInI ₄	67.231	0.209
mp-6138	Na2TiSiO 5	79.548	0.954
mp-619575	ClF3	35.294	0.256
mp-619651	Cs ₃ AlP ₂	38.807	0.132

mp-620652	NaSr ₂ AlP ₃	36.89	0.28
mp-621112	Cs 5Nb2S4Cl 9	272.652	0.07
mp-622018	BAs (Pb3O10)2	70.951	0.321
mp-622195	CsSO ₃ F	88.405	0.213
mp-622197	Cs2PtS (O3F) 6	131.553	0.017
mp-6228	Na ₂ TiGeO ₅	85.596	0.804
mp-6238	Ba2Ta 6Te2O21	44.8	0.792
mp-624117	Cs ₃ V ₄ Te ₂ ClO ₁₄	1000	0.036
mp-6245	K 5Nb4O12F	129.922	2.068
mp-625054	AlHO ₂	1000	0.259
mp-625475	H ₂ SO ₄	40.897	1.399
mp-625661	H₃BrO₄	1000	0.478
mp-625801	Sr(H \$O 5)2	95.192	0.342
mp-626256	H3NO4	55.31	0.265
mp-626785	КНО	114.588	0.405
mp-6289	Ba ₂ Ti(GeO ₄) ₂	121.385	0.453
mp-628908	KICl ₂	46.662	0.455
mp-6310	Ba ₃ Y(BO ₃) ₃	976.503	0.128
mp-634378	NaHSO4	49.087	1.167
mp-638009	RbPPbS ₄	39.253	0.035
mp-6390	Rb3Ti3(PO4)5	1000	0.242
mp-640389	Cs ₂ Th(PS ₃) ₃	302.791	8.789
mp-642795	PHSF ₂	73.515	0.021
mp-642834	BaH 5ClO3	72.881	0.041
mp-643253	Ba ₂ H Pt	31.36	0.211
mp-643265	ReF 7	422.213	0.008
mp-643586	CsHS2(O3F)2	76.692	1.675
mp-643902	SnH4(NF)2	78.116	0.705
mp-6441	K ₂ PO ₃ F	50.092	0.079
mp-644129	KNiPH2O 5	938.959	0.277
mp-644828	AuXe ₂ F ₁₇	1000	0.14
mp-645272	TlV3(SeO 6)2	455.777	0.204
mp-6459	$CaMg(CO_3)_2$	119.968	0.309
mp-6467	Na ₂ CuP ₂ O ₇	50.354	102.781
mp-647342	SbP ₃ C(NCl ₅) ₃	751.922	0.221
mp-647385	V2Pb4O9	154.813	0.285
mp-6481	Na ₂ ZnSi ₃ O ₈	112.155	1.269
mp-648414	V2PS10	111.788	0.621
mp-648932	Nb ₂ PS ₁₀	80.488	0.037
mp-649253	NbClF 8	45.933	0.245
mp-649616	Pd(XeF 8)2	1000	0.082
mp-6500	KRb2ScF6	35.602	4.966

mp-651786	Ca ₅ MnSi ₅ (Pb ₃ O ₁₁) ₃	37.442	0.225
mp-652776	Rb ₂ V(PO ₄) ₂	350.147	0.364
mp-653633	K ₂ ZnCl ₄	87.449	0.098
mp-653973	KZnPO ₄	134.445	0.194
mp-654447	Ni(XeF s)2	41.006	0.147
mp-6648	KLiB4O7	36.928	0.518
mp-6651	K ₂ Ta ₂ (OF ₂) ₃	475.867	0.356
mp-667283	Sr 5Re3ClO1 5	37.373	0.158
mp-667292	K2MgSiO12	206.73	0.298
mp-667305	ReN(OF ₂) ₃	391.443	0.587
mp-667326	K ₅InO₄	184.588	10.983
mp-667360	CsSbOF ₄	629.926	0.162
mp-667379	Ba 7Al 64O103	109.608	0.203
mp-6675	Na ₂ Zn(SiO ₃) ₂	96.215	0.326
mp-669455	Ga4Hg11(AsBr4)4	102.079	0.099
mp-669508	TaP2NCl12	75.83	0.182
mp-6698	Th ₂ Cu(PO ₄) ₃	1000	2.524
mp-672212	NaNb13O33	1000	0.405
mp-672248	TaAsPCl13	48.458	0.049
mp-6748	Cs2Ti(Si2O5)3	82.248	3.768
mp-6759	BaGa2(SiO4)2	56.289	2.6
mp-676130	TlSnF ₃	144.508	7.066
mp-676501	K ₃ Sn ₂ S ₃ BrO ₁₂	295.104	1.289
mp-676801	K 7Th 6F31	698.275	0.254
mp-677192	K4PH 5S3O1 6	815.19	0.795
mp-677248	Ca2AlH10IO 8	53.719	16.91
mp-677416	Na 5Mg 5In3(SO4)12	1000	0.702
mp-677520	KBa Zn4(GaO3)7	52.738	0.308
mp-677638	Na27Ca3Al 5(P2O 7)12	1000	8.195
mp-679989	Bi(Mo ₂ Cl 5)3	218.163	0.062
mp-679997	$CsAg_2(B \circ O s)_3$	356.693	0.33
mp-680198	Cs4Th2P5Se17	82.617	0.143
mp-680240	Sb2Cl F4	33.179	0.219
mp-680284	Rb 6Ta4S2 5	186.505	0.261
mp-680374	KAlSiO4	138.265	0.203
mp-680410	$K_3Nb_2S_{11}$	61.395	0.332
mp-680498	RbTaPS 6	80.361	2.623
mp-680683	CsB $_{\rm sO_{14}}$	34.013	0.282
mp-683918	RbC ₂ N ₃	177.231	0.553
mp-683925	$CsSb_3F_{16}$	1000	0.107
mp-683949	AlP3(NCl3)3	69.515	0.152
mp-683955	KTaPS 6	52.34	0.226

mp-684010	K 8Ti 5P2(O4F11)2	1000	1.179
mp-684018	SrB O13	263.004	0.967
mp-6841	Ba4NaCu(CO 5)2	1000	0.264
mp-685352	Ca ₂ NF	1000	0.344
mp-685478	Na ₂ PdO ₃	98.993	0.155
mp-685810	AsN ₂ F 7	162.828	0.393
mp-686464	Ca10P \$O24	43.127	0.311
mp-6867	KCaCO ₃ F	1000	0.07
mp-6870	KBe ₂ BO ₃ F ₂	109.536	0.207
mp-6903	Na2Ca4ZrNbSi4O17F	36.766	8.604
mp-693620	KCa2Be2Al(Si2O5)6	100.95	0.435
mp-693753	BaNa ca P (O F)	1000	1.963
mp-695043	K4PH 5Se3O1 6	478.105	0.747
mp-695963	K2NaH10IO10	48.679	0.261
mp-696078	K3ZrH2S(OF)5	439.921	2.645
mp-696189	T1H (NO4)3	99.081	0.152
mp-696379	BH3OF4	37.357	3.303
mp-696396	NaHCO ₃	31.92	2.498
mp-696497	Mg3Si4(HO 6)2	58.268	0.557
mp-696528	KPH3NO3	44.836	4.123
mp-696656	BH4O2F3	37.681	0.218
mp-696683	K ₃ SnHF 8	752.93	0.156
mp-696940	TiH12C2(NF)6	137.98	0.26
mp-697078	Cs2SiP4(HO 7)2	401.69	20.004
mp-697253	SiH12C2(NF)6	263.583	0.386
mp-698063	Na ₂ P ₂ H ₂ O ₇	106.778	0.494
mp-698479	RbTeHOF ₄	939.074	0.462
mp-699453	RbAs2H5O8	36.257	0.152
mp-7012	KRb2YF6	31.408	21.638
mp-703476	P2H16N4O7	132.497	0.194
mp-704408	K 8V2(S2O9)3	1000	0.212
mp-7049	ZrTlCuS ₃	35.098	0.119
mp-705134	In2(MoO4)3	42.359	0.916
mp-705514	SbHC3(NCl3)3	44.952	0.879
mp-705900	Hf3Tl10M012PbO48	39.2	0.133
mp-706239	NaCa2Mg2V3O12	42.547	0.262
mp-706243	Al2Si3H (NO 5)2	1000	0.359
mp-706386	ZrH 6O3F4	63.275	0.796
mp-706631	Na ₂ B ₃ HO 6	63.635	0.59
mp-706976	PH4N(OF)2	66.979	0.313
mp-706986	PH ₄ NO ₃	44.736	0.167
mp-706995	ZnCoH18N6Cl5	361.971	0.28

mp-707195	KSiHO ₃	65.447	0.264
mp-707219	K2Zr2ZnH12(OF2)6	1000	0.892
mp-707343	ZrH12C2(NF)6	73.812	1.041
mp-707443	Na 1AlH2C4(O3F)4	131.212	0.387
mp-707453	K₅NaP3(HO4)3	1000	0.157
mp-707536	KHSeO4	132.704	0.192
mp-707782	K 273H (OF)12	1000	0.193
mp-707960	ZnH12C2(N3Cl2)2	112.254	0.046
mp-7089	KMgSb	36.129	0.033
mp-708961	BeH SeO ₃	33.064	0.274
mp-709350	Sr 5As 5HO1 8	1000	0.253
mp-720104	Na4Al3Ge3NO14	53.887	0.331
mp-720294	AsH18N3O7	337.227	0.666
mp-720583	Na3B3H2O7	145.069	0.527
mp-720586	CaH4NClO 5	34.626	0.206
mp-720642	NaB3H4O7	49.166	1.45
mp-721182	PH11(NO2)2	44.086	0.182
mp-721471	CuPH₄O ₅ F	269.346	34.574
mp-722246	SiH10(O2F3)2	38.043	2.323
mp-722272	Li2H12C3SN 6O7	115.551	0.586
mp-722832	PH3NF 5	64.284	0.278
mp-722900	CaH3NO 5	32.128	0.104
mp-723109	BeH14(I2O9)2	1000	0.369
mp-730154	NaAs3H2O9	35.605	5.748
mp-730460	Na 5H3(CO3)4	195.525	0.056
mp-7323	RbBe ₂ BO ₃ F ₂	117.107	0.206
mp-733468	K ₂ PHO ₄	739.107	0.15
mp-733637	NaH 🛛 5	67.917	1.355
mp-733655	KH3(SO4)2	151.232	12.43
mp-734042	MgH12(NO 6)2	108.906	0.289
mp-735541	NiSn2H12(OF)6	212.651	0.901
mp-7404	Na ₃ SbO ₄	55.058	15.818
mp-740714	LiB \$H2O 9	44.43	0.343
mp-741045	Na4AlP2HO9	186.599	0.606
mp-743538	CrH18(O3F)3	48.72	0.118
mp-744205	K2Cr2AsHO10	1000	0.299
mp-744625	ZnCrH15N 5Cl4F	271.211	0.273
mp-744751	NaMn 6Al3H42(SO19)2	1000	0.155
mp-745159	MoPH ₃ O ₇	87.865	0.928
mp-745166	Sr ₂ Fe ₂ H ₂ OF ₁₀	38.365	0.295
mp-7470	RbCuO	57.385	0.057
mp-752709	InBP2H 5NO 9	31.437	0.513

mp-753353	Sr4LiCu(CO 5)2	1000	0.306
mp-753798	Rb ₂ SnO ₃	33.412	0.183
mp-753854	Rb2PH3SeO8	39.743	5.369
mp-754370	Ba3GeO 5	52.945	0.209
mp-755428	Rb ₃ ClO	55.311	0.053
mp-755663	Ta2Pb2O7	99.902	0.396
mp-756748	ScH ₃ (ClO 5)2	835.572	4.337
mp-756769	Na ₂ TlPCO ₇	83.096	0.272
mp-756981	K ₂ SbPCO ₇	551.023	0.353
mp-757218	K4Na2H18Pd(IO10)2	1000	0.481
mp-757594	Os(OF ₂) ₂	112.018	0.01
mp-757723	SrH4(SO4)3	140.54	0.49
mp-757840	Ba4(PtO3)3	31.053	3.692
mp-757850	K4Sb2O5	57.992	0.039
mp-757878	Na 5Cu(HO ₂)2	75.359	0.175
mp-757963	K2MgH (CO 5)2	36.138	0.647
mp-757981	Na ₂ SnGe ₂ (HO ₄) ₂	32.916	0.647
mp-758007	$Ba_2CaP_4(H_3O_8)_2$	50.442	1.053
mp-758103	YH2(CO3)2	146.8	0.238
mp-758337	Ca2P 6O1 7	50.269	1.052
mp-758814	CaAs ₂ H ₆ F _{1 8}	128.146	0.415
mp-758948	Cs2H 6CO 6	64.982	0.166
mp-758957	As2HPbF13	77.247	0.128
mp-759223	Sn(SO ₄) ₂	31.634	0.326
mp-759344	P3H30N 1012	617.373	1.643
mp-7594	CsLiF ₂	69.014	0.23
mp-759651	ScH Br ₃ N ₂	71.267	2.943
mp-759900	K2LiNbO4	150.376	0.332
mp-760046	LiPH21S3N7	54.395	0.713
mp-760417	Rb ₄ I ₂ O	266.004	0.017
mp-760678	Sb ₂ H ₄ AuF ₁₆	155.061	0.163
mp-760762	NbOF ₃	92.699	0.374
mp-761252	RbPH3O4F	48.893	0.73
mp-762082	ThH10N4O17	78.29	0.097
mp-762295	K2Mn3V2(HO5)2	147.196	0.871
mp-764233	Na CoO 6	154.44	0.084
mp-765136	LiMn &F 33	385.197	0.256
mp-765597	HS ₂ IO 8	48.891	0.774
mp-766175	RbInBP2HO9	32.36	0.629
mp-767430	Na ₃ CdPCO ₇	36.525	0.397
mp-767521	Na ₂ InPCO ₇	84.543	0.284
mp-767722	$VFe(P_2O_1)_2$	36.389	0.319

mp-768144	Na ₂ SbPCO ₇	115.289	0.367
mp-768368	K4I2O	119.281	0.02
mp-768670	K ₃ MgPCO ₇	64.208	0.387
mp-769604	K2MnPCO7	1000	0.249
mp-769616	Na ₂ CrPCO ₇	97.502	0.324
mp-769971	BaGa4O7	226.992	0.688
mp-770773	$Rb_2S_2O_7$	119.558	3.982
mp-770839	LiCr(CO ₃) ₂	76.429	0.182
mp-770968	Na ₃ NiPCO 7	314.864	0.702
mp-771127	Rb4TiO4	63.485	0.462
mp-771139	Cs4HfO4	46.969	1.76
mp-771185	K2Ge2O5	55.224	2.356
mp-771255	Cs4SiO4	76.117	2.087
mp-772228	CdP ₄ O ₁₁	102.459	3.327
mp-772808	K2BiPCO7	77.839	0.276
mp-773432	KMnPCO ₇	98.931	0.32
mp-774848	H10SeO8	72.129	0.19
mp-775198	Ti ₃ P ₆ WO ₂₄	171.429	0.204
mp-775430	LiBi3(IO2)2	44.344	0.196
mp-775466	K2InSi4HO11	69.994	0.366
mp-778977	CaAs ₂ HF ₁₃	231.203	0.229
mp-8065	K2Ti O13	33.153	6.088
mp-8201	Rb3PdF ₅	66.954	0.283
mp-8226	ThNF	1000	0.224
mp-8333	RbNaSnF 6	165.123	0.156
mp-8416	BaCaGaF 7	139.816	0.425
mp-8449	Rb2Li2SiO4	34.593	0.643
mp-8450	Rb ₂ Li ₂ GeO ₄	41.311	0.822
mp-849311	MgSb2H2F14	34.571	0.166
mp-849433	SrTiH4(OF3)2	307.592	1.802
mp-849805	B12H21C4S2I	163.805	0.749
mp-8570	Ba ₃ Zr ₂ S ₇	46.359	0.059
mp-8603	RbAgO	116.333	0.048
mp-863420	Rb4H4C3O10	274.258	0.339
mp-865427	KSrCO ₃ F	1000	0.06
mp-865500	Na2Hf2O5	1000	0.164
mp-866311	Bi3BrO4	950.861	0.386
mp-866620	Cs2MgP4(HO2)8	78.205	0.036
mp-866638	KSc(BH ₄) ₄	44.707	0.141
mp-867261	RbSrCO ₃ F	1000	0.057
mp-867300	Rb2Hf2O5	449.153	0.141
mp-867975	CsB2H5O6	43.616	0.124

mp-8708	Mg(AuF4)2	49.625	0.241
mp-8796	Sr ₂ LiSc(B ₂ O ₅) ₂	1000	1.371
mp-8810	SrZn2(PO4)2	36.547	0.439
mp-8892	LiInF ₄	46.764	0.275
mp-8962	Rb2HgF4	1000	0.036
mp-8963	Cs2HgF4	841.758	0.027
mp-8985	Ba ₂ YC ₂ (O ₂ F) ₃	120.528	0.116
mp-8989	Na ₂ P ₂ PdO ₇	378.386	66.238
mp-9029	Ca ₃ VN ₃	128.975	0.155
mp-9068	K2NaAlP2	55.037	0.04
mp-9069	K2NaAlAs2	41.286	0.038
mp-9107	NaZrCuS ₃	32.33	0.137
mp-9195	BaCuSeF	118.965	0.376
mp-9306	Sr ₂ ZnN ₂	86.26	0.108
mp-9396	HfTlCuS₃	78.058	0.121
mp-9486	K2AlF 5	76.328	0.136
mp-9511	K2AsAuS4	50.963	0.102
mp-9583	K ₂ ZnF ₄	978.704	0.042
mp-96	S	74.632	0.205
mp-9640	SrCu(SeO ₃) ₂	46.448	0.196
mp-9672	K ₂ NiP ₂	188.085	0.136
mp-9726	SrBeF ₄	45.242	1.029
mp-9986	CsAuO	383.093	0.044

The Python code for automatically creating the slab structures is made availabl e on Github at the following address (https://github.com/bmd-lab/mss_auto) and

is also included below as plain text to facilitate long-term reproducibility.

```
from pymatgen.core import Structure
import numpy as np
from os.path import isfile, join,isdir
from os import listdir, remove, rename, mkdir, getcwd, rmdir
import re
from shutil import copy
import sys
import getopt
pattern id = r'[m][p][-] \d+'
opts, args =
getopt.getopt(sys.argv[1:],'hl:d:n:',["help","length=",'direction=','
name='])
def make_supercell(path_unit_cell, path_super_cell,direction):
    .....
    Function:
    Make supercell according to the length
    of unit cell along with z direction, and
    the length of final supercell is at least
    15 anstrom.
    Parameters:
    path_poscar_cart: string
    The path of unit cell structure
    super cell dir: string
    The path of supercell structure
    .. .. ..
    dic_line={'x':2,'y':3,'z':4}
dic_supercell={'x':[[1,1,1],[2,1,1],[3,1,1],[4,1,1],[5,1,1],[6,1,1]],
'y':[[1,1,1],[1,2,1],[1,3,1],[1,4,1],[1,5,1],[1,6,1]],
'z': [[1,1,1], [1,1,2], [1,1,3], [1,1,4], [1,1,5], [1,1,6]] }
    files = [f for f in listdir(path_unit_cell)
                         if isfile(join(path unit cell, f))]
    # print("There have {} files of unit cell
files".format(len(files)))
    for i in range(len(files)):
        file_read = open(path_unit_cell + '\\' + files[i], 'r')
        lines = file read.readlines()
        l = np.array([float(lines[dic line[direction]].split()[0]),
```

```
float(lines[dic line[direction]].split()[1]),
                      float(lines[dic line[direction]].split()[2])])
        11 = 1 * 1
        L = np.sqrt(ll[0] + ll[1] + ll[2])
        if L >= 15:
            id = re.search(pattern id, files[i]).group()
            struc = Structure.from file(path unit cell
                                         + '\\' + files[i])
            struc.make supercell(dic supercell[direction][0])
            struc.to(filename=path_super_cell + '\\' + id +
str("POSCAR"))
            print(id, ' has make supercell
', dic supercell[direction][0])
        elif 7.5 <= L < 15:
            id = re.search(pattern id, files[i]).group()
            struc = Structure.from file(path unit cell + '\\'
                                         + files[i])
            struc.make supercell(dic supercell[direction][1])
            struc.to(filename=path super cell + '\\' + id +
str("POSCAR"))
            print(id, ' has make supercell
', dic supercell[direction][1])
        elif 5 <= L < 7.5:
            id = re.search(pattern id, files[i]).group()
            struc = Structure.from file(path unit cell + '\\'
                                         + files[i])
            struc.make supercell(dic supercell[direction][2])
            struc.to(filename=path super cell + '\\' + id +
str("POSCAR"))
            print(id, ' has make supercell
', dic supercell[direction][2])
        elif 3.75 <= L < 5:
            id = re.search(pattern id, files[i]).group()
            # print(id)
            struc = Structure.from file(path unit cell + '\\'
                                         + files[i])
            struc.make supercell(dic supercell[direction][3])
            struc.to(filename=path super cell + '\\' + id +
str("POSCAR"))
            print(id, ' has make supercell
', dic supercell[direction][3])
        elif 3 <= L < 3.75:
            id = re.search(pattern id, files[i]).group()
            struc = Structure.from file(path unit cell + '\\'
```

```
+ files[i])
            struc.make supercell(dic supercell[direction][4])
            struc.to(filename=path super cell + '\\' + id +
str("POSCAR"))
            print(id, ' has make supercell
', dic supercell[direction][4])
        elif 2.5 <= L < 3:
            id = re.search(pattern_id, files[i]).group()
            struc = Structure.from file(path unit cell + '\\'
                                        + files[i])
            struc.make supercell(dic supercell[direction][5])
            struc.to(filename=path super cell + '\\' + id +
str("POSCAR"))
            print(id, ' has make supercell
', dic supercell[direction][5])
def add atom(path 1, path 2, direction):
    .....
    Function:
    Produce 1600 different supercell files that the fake
    atom in different position of box for every supercell
   Parameters:
   path 1: string
    The path of POSCAR(super cell), and it must be direction
coordinate
   path 2: string
    The path of POSCAR files that contain a fake atom,
    and it will include 1600 different cases.
    .....
    for i in range(100): # i is the z coordinate of fake atom
        with open(path_1, 'r') as f:
            lines = f.readlines()
            lines[6] = (lines[6].strip('\n')) + ' 1' + '\n' # add
one for atom number
            lines[5] = (lines[5].strip('\n')) + ' X' + '\n' #
suppose the fake atom is X
        for m in np.arange(0.05, 0.95, 0.25): # m is the x
coordinate of fake atom
            for n in np.arange(0.05, 0.95, 0.25): # m is the y
coordinate of fake atom
                with open(path 2 + '//' + 'POSCAR'
                          + ' ' + str(m) + ' '
```

```
+ str(n) + ' ' + str(i), 'w+') as l:
                    for j in range(len(lines)):
                        l.write(lines[j])
                    if direction == 'x':
                        l.write(str(i * 0.01 + 0.005) + ' ' +
                                 str(m) + ' ' +
                                 str(n) + ' X')
                    elif direction == 'y':
                        l.write(str(m) + ' ' +
                                 str(i * 0.01 + 0.005) + ' ' +
                                 str(n) + ' X')
                    elif direction == 'z':
                        l.write(str(m) + ' ' +
                                str(n) + ' ' +
                                 str(i * 0.01 + 0.005) + ' X')
def delet file(Dir, File):
    # delet files in Dir except File
    files = [f for f in listdir(Dir) if isfile(join(Dir, f))]
    for i in files:
        if i == File:
            pass
        else:
            remove (Dir + '//' + i)
def get nearest distance(path):
    .....
    Return the list of minimum distance to fake atom of all
supercells
    and the corresponding structures.
    Parameters
    path: string
    The path to the folder containing supercells files, and the
supercell
    must be already added with fake atom.
    .....
    files = [f for f in listdir(path) if isfile(join(path, f))]
    distance, structure = [], []
    for i in range(len(files)):
        s = Structure.from file(path + '//' + files[i])
        d = s.distance matrix
        t = d[:, -1]
        tt = np.delete(t, [-1])
```

```
\min d = np.min(tt)
        distance.append(min d)
        structure.append(files[i])
    return distance, structure
def dir trans cart(dir path, cart path):
    .....
    Function:
    Transform the coordinate of POSCAR from direction
    to cartesian in batch.
    Parameters
    dir path: string
    The path of POSCAR files with direction coordinate
    cart path: string
    The path of POSCAR files that after convert into
    cartesian coordinate
    .....
    onlyfiles = [f for f in listdir(dir path) if
isfile(join(dir path, f))]
    for i in range(len(onlyfiles)):
        try:
            file read = open(dir path + "\\" + onlyfiles[i], 'r')
            line = file read.readlines()
            file read.close()
            a1 = float(line[2].split()[0])
            a2 = float(line[3].split()[0])
            a3 = float(line[4].split()[0])
            b1 = float(line[2].split()[1])
            b2 = float(line[3].split()[1])
            b3 = float(line[4].split()[1])
            c1 = float(line[2].split()[2])
            c2 = float(line[3].split()[2])
            c3 = float(line[4].split()[2])
            num atoms = sum([int(x) for x in line[6].split()])
            x cartesian = []
            y cartesian = []
            z cartesian = []
            start_num = 8
            for k in range(start_num, num_atoms + start_num):
                x cartesian.append(
                    float(line[k].split()[0]) * a1
                    + float(line[k].split()[1]) * a2
                    + float(line[k].split()[2]) * a3)
```

```
y cartesian.append(
                    float(line[k].split()[0]) * b1
                    + float(line[k].split()[1]) * b2
                    + float(line[k].split()[2]) * b3)
                z cartesian.append(
                    float(line[k].split()[0]) * c1
                    + float(line[k].split()[1]) * c2
                    + float(line[k].split()[2]) * c3)
            with open(cart path + "\\" + onlyfiles[i], "w",
encoding="utf-8") as f:
                for j in range(7):
                    f.write(line[j])
                f.write("Cartesian\n")
                for l in range(num atoms):
                    string = str(x_cartesian[1]) \
                             + " " + str(y cartesian[l]) \
                             + " " + str(z cartesian[l]) + "\n"
                    f.write(string)
        except:
            print(onlyfiles[i])
def Get num of atom(path, file):
    # get the number of atoms in POSCAR
    # return a data of int type
    with open(path + '//' + file, 'r') as f:
        line = f.readlines()
        num atoms = sum([int(x) for x in line[6].split()])
    return num atoms
def insert empty(dir1, dir2, distance, file,direction):
    .. .. ..
    Function:
    Introduce an empty layer in the end of POSCAR
    along with z direction
   Parameters:
   dir1: string
   The path of origin POSCAR files and the coordinate of POSCAR
   can be direction or cartesian
   dir 2: string
   The path of POSCAR files that have introduced empty layer
   space
   distance: int
   The length of empty layer
```

```
file: string
   Name of structure, such as : POSCAR, id+POSCAR
   .. .. ..
    dic line = { 'x': 2, 'y': 3, 'z': 4 }
    with open(dir1 + '//' + file, 'r') as f:
        lines = f.readlines()
        # print(len(lines))
        a, b, c = float(lines[dic_line[direction]].split()[0]), \
                  float(lines[dic line[direction]].split()[1]), \
                  float(lines[dic line[direction]].split()[2])
        # print(a,b,c)
        vector = np.array([a, b, c])
        length = np.sum(np.square(vector)) ** 0.5
        L = length + distance
        ratio = L / length
        new vector = vector * ratio
        with open(dir2 + '//' + file, 'w') as f:
            lines[dic line[direction]] = str(new vector[0]) \
                        + ' ' + str(new vector[1]) \
                       + ' ' + str(new_vector[2]) + '\n'
            for i in lines:
                f.write(i)
def move atom(dir1, atom num, dir2, file, length, direction):
    .....
    Function:
    Move atoms that higher than fake atom,
    equivalent to the effect of moving the
    vacuum layer.
    Parameters:
    dir1: string
    The path of supercell files that
    contain vacuum layer, and the atoms haven't
    moved
    atom num: int
    The number of atoms in POSCAR file
    dir2: string
    The path of supercell files that
    contain vacuum layer, and the atoms have
    moved according to the position of atoms
    file: string
    Name of structure, such as : POSCAR, id+POSCAR
    length: int
```

```
The distance of atom need to be moved,
it should stay the same with the
length of vacuum layer
.....
dic num={'x':0, 'y':1,'z':2}
with open(dir1 + '//' + file, 'r') as f:
    lines = f.readlines()
    high = float(lines[-1].split()[dic_num[direction]])
              print(z fake)
    for i in range(atom num - 1):
        x, y, z = float(lines[8 + i].split()[0]), \
                   float(lines[8 + i].split()[1]), \
                  float(lines[8 + i].split()[2])
        if direction == 'x':
            if high < 0 and x < high:
                x new = x - length
                lines[8 + i] = str(x new) + ' ' \setminus
                                + str(y) + ' ' \
                                + str(z) + ' n'
            elif high > 0 and x > high:
                x new = x + length
                lines[8 + i] = str(x new) + ' ' \
                                + str(y) + ' ' \
                                + str(z) + '\n'
        elif direction == 'y':
            if high < 0 and y < high:
                y new = y - length
                lines[8 + i] = str(x) + ' ' \setminus
                                + str(y new) + ' ' \
                                + str(z) + ' n'
            elif high > 0 and y > high:
                y new = y + length
                lines[8 + i] = str(x) + ' ' \setminus
                                + str(y new) + ' ' \
                                + str(z) + '\n'
        elif direction == 'z':
            if high < 0 and z < high:
                z new = z - length
                lines[8 + i] = str(x) + ' ' \
                                + str(y) + ' ' \
                                + str(z new) + '\n'
            elif high > 0 and z > high:
                z new = z + length
                lines[8 + i] = str(x) + ' ' \setminus
```

```
+ str(y) + ' ' \
                                    + str(z new) + ' \n'
        with open(dir2 + '//' + file, 'w+') as f:
            for i in lines:
                f.write(i)
def delet fake atom(dir1, dir2, file):
    .. .. ..
    Function:
    Delet the fake atom of slab structure
    Parameters:
    dir1: string
    The path of slab structure contained
    with fake atom
    dir2: string
    The path of slab structure that
    have deleted fake atom
    file: string
    Name of structure, such as : POSCAR, id+POSCAR
    .....
    with open(dir1 + '//' + file, 'r') as f:
        lines = f.readlines()
        s = lines[5].split()
        s2 = lines[6].split()
        n s, n s2 = s[:-1], s2[:-1]
        line5, line6 = '', ''
        for i in range(len(n s)):
            line5 += n s[i] + ' '
            line6 += n s2[i] + ' '
        new line5 = line5 + ' n'
        new line6 = line6 + '\n'
                  print(new line5,new line6)
        #
        lines[5], lines[6] = new_line5, new_line6
        with open(dir2 + '//' + file, 'w+') as f:
            for i in lines:
                f.write(i)
def main(length, direction, unit_cell_dir):
    name=unit_cell_dir.split('//')[-1]
    supercell_dir=unit_cell_dir[:-len(name)]+'super'
    slab dir=unit cell dir[:-len(name)]+'slab'
    mkdir(supercell dir)
    mkdir(slab dir)
```

```
make supercell(unit cell dir, supercell dir, direction)
    files=[f for f in listdir(supercell dir) if isfile
(join(supercell dir,f))]
    mkdir(slab dir+'//Final slab')
    for file in files:
        mkdir(slab dir + '//' + file)
        mkdir(slab dir + '//' + file + '/add')
        mkdir(slab dir + '//' + file + '/cartesian')
        mkdir(slab dir + '//' + file + '/add empty')
        mkdir(slab dir + '//' + file + '/move atom')
        mkdir(slab dir + '//' + file + '/final slab')
        poscar dir= slab dir+'//'+file+"/add"
        cart dir = slab dir+'//'+file+"/cartesian"
        insert empty dir = slab dir+'//'+file+'/add empty'
        move atom dir = slab dir+'//'+file+'/move atom'
        final_slab_dir = slab_dir+'//'+file+'/final slab'
        s = Structure.from file(supercell dir + '//' + file)
        s.to(filename=slab dir + '//' + file + '//' + 'POSCAR')
        path 1 = slab dir + '//' + file + '//' + 'POSCAR'
        path 2 = slab dir + '//' + file + '//' + 'add'
        try:
            max dis=[]
            add atom(path 1, path 2, direction)
            d, stru = get nearest distance(path 2)
            max dis.append(max(d))
            delet file(path 2, stru[d.index(max(d))])
            rename(path 2 + '//' + stru[d.index(max(d))], path 2 +
'//' + file)
            print(file, 'is OK!!!')
        except:
            print(file, 'Happen something wrong')
        dir trans cart(poscar dir, cart dir)
        num = Get num of atom(cart dir, file)
        insert empty(cart dir,insert empty dir,length,file,direction)
        move atom (insert empty dir, num, move atom dir,
file,length,direction)
        delet_fake_atom(move_atom_dir, final_slab_dir, file)
        copy(final slab dir+'//'+file,slab dir+'//Final slab//'+file)
dir=getcwd()
unit name='unit cell'
length,direction='',''
```

```
try:
    for k, v in opts:
        if k in ('-n', '--name'):
            unit name = v
        elif k in ('-l', '--length'):
            length = int(v)
        elif k in ('-d','--direction'):
            direction = v
        elif k in ('-h','--help'):
            print('Hello!! ','\n',
                   'Before running this script' \
                   ' you are expect to creat a new folder named','\n',
                   'unit_cell for storing the unit cell files' \setminus
                   ' and fill the following three options', '\n',
                   'with right information','\n'
                  'Options:','\n',
                   '-n, --name the name of '\
                   'unit cell folder', '\n',
                   '-l, --length
                                    the length of '\
                   'empty layer','\n',
                   '-d, --direction the direction of ' \setminus
                   'makeing supercell', '\n'
                   )
    unit_dir=dir+'\\'+ unit_name
    main(length, direction, unit dir)
except:
    rmdir(dir+'\\'+'slab')
    rmdir(dir+'\\'+'super')
```