Supplement

Quenching of bacteriochlorophyll *a* triplet state by carotenoids in the chlorosome baseplate of green bacterium *Chloroflexus aurantiacus*

Andrei G. Yakovlev*a and Alexandra S. Taisova a

^aLomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory, 119991, Moscow, Russian Federation, * e-mail: yakov@belozersky.msu.ru

The population dynamics of states can be approximately described by the following system of kinetic equations:

$$dN_{1}/dt = \sigma N_{0B}'J(t) - (K_{01} + K_{1})N_{1}$$

$$dN_{2}/dt = K_{1}N_{1} - K_{2}N_{2}$$

$$dN_{3}/dt = K_{2}N_{2}$$

$$dN_{0B}/dt = -\sigma N_{0B}'J(t) + K_{01}N_{1} + K_{2}N_{2}$$

$$dN_{0C}/dt = -dN_{3}/dt$$
(1)

Here N_1 , N_2 and N_3 are the population densities of the BChl a^* , BChl a^T and Car^T states, respectively; K_1 and K_2 are the rates of the BChl $a^* \rightarrow$ BChl a^T and BChl $a^T \rightarrow$ Car^T processes, respectively; K_{01} – rate of spontaneous decay of the BChl a^* ; N_{0B} and N_{0C} are the population densities of the BChl a and Car ground states, respectively; N'_{0B} is the population density of BChl a in the absence of excitation; σ is the absorption cross section of BChl a at the excitation wavelength; $J(t) \sim sech^2(t/\tau)$ is the time course of the excitation energy density.

Fig. S1. Simulation of the populations of the states T₁ BChl *a* (black), T₁ Car (red) and the sum – (S₀ BChl *a* + S₁ BChl *a*) (blue) at $K_1 = 0.1$ (solid line), 1 (dash) and 5 ns (dash-dot). $K_{01} = 0.17$ ns, $K_2 = 1.3$ ns, $\tau = 0.01$ ns.

Fig. S2. Same as in Fig. S1, but with population normalization.

Fig. S3. Simulation of the populations of the states T₁ BChl *a* (black), T₁ Car (red) and the sum – (S₀ BChl *a* + S₁ BChl *a*) (blue) at $\tau = 0.01$ (solid line), 0.1 (dash) and 1 ns (dash-dot). $K_{01} = 0.17$ ns, $K_2 = 1.3$ ns, $K_1 = 0.5$ ns.

Fig. S4. Simulation of the populations of the states T₁ BChl *a* (black), T₁ Car (red) and the sum – (S₀ BChl *a* + S₁ BChl *a*) (blue) at $K_{01} = 0.1$ (solid line) and 1 ns (dash). $K_1 = 0.5$ ns, $K_2 = 1.3$ ns, $\tau = 0.01$ ns.

Fig. S5. Simulation of the populations of the states T₁ BChl *a* (black), T₁ Car (red) and the sum – (S₀ BChl *a* + S₁ BChl *a*) (blue) at $K_2 = 0.5$ (solid line) and 3 ns (dash). $K_{01} = 0.17$ ns, $K_1 = 0.5$ ns, $\tau = 0.01$ ns.