Supporting Information

Electronic Structure and Transport in the Potential Luttinger Liquids CsNb₃Br₇S and RbNb₃Br₇S

Fabian Grahlow^a, Fabian Strauß^b, Marcus Scheele^b, Markus Ströbele^a, Alberto Carta^c, Sophie F. Weber^c, Scott Kroeker^d, Carl P. Romao^{*c} and H.-Jürgen Meyer^{*a}

Figure S1: Optical micrographs of a (a) contacted CsNb₃Br₇S crystal and a (b) contacted RbNb₃Br₇S crystal.

Figure S2: (left)Dark currents of RbNb₃Br₇S Crystals on silicon with 770 nm dioxide layer at 300 K. (Right) Electrical conductivity of RbNb₃Br₇S versus set temperature in a range of 20 K to 300 K.

Institute of Inorganic Chemistry

^{a.} Section for Solid State and Theoretical Inorganic Chemistry

Eberhard-Karls-Universität Tübingen

Auf der Morgenstelle 18, 72076 Tübingen, Germany

^{*a.} E-mail: juergen.meyer@uni-tuebingen.de

^{b.} Institute for Physical and Theoretical Chemistry

Eberhard-Karls-Universität Tübingen

Auf der Morgenstelle 18, 72076 Tübingen, Germany

^{c.}Department of Materials, ETH Zurich,

Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland

^{*}c E-mail: carl.romao@mat.ethz.ch

d. Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

Figure S3: ¹³³Cs MAS NMR spectrum of CsNb₃Br₇S acquired at 65.5 MHz with a spinning rate of 20.000(3) kHz. Spinning sidebands are marked with asterisks; peaks from minor impurities or decomposition products are indicated by arrows.

Figure S4: Measured magnetic susceptibility during one heating/cooling cycle at 100 Oe for Nb_3Cl_8 (line) and $CsNb_3Br_7S$ (line with squares).

Figure S5: Calculated projected density of electronic states in CsNb₃Br₇S. The Fermi energy is shown as a black line. **Table S1:** Parameters of the tight-binding model corresponding to the bond-centred Wannier functions of CsNb₃Br₇S.

<i>R</i> (unit cell translation)	<i>t</i> (hopping integral) / eV	Note
[0 0 0]	7.05	On-site bond energy
[0 0 0]	-0.20	Nearest neighbor intra-chain hopping
[0 0 1]	0.02	Next-nearest intra-chain hopping
[0 0 0]	-0.01	Nearest inter-chain hopping

Table S2: Calculated phonon frequencies at Γ of CsNb₃Br₇S.

r nonon nequency / chi						
0.00	0.00	0.00	13.82	19.00		
22.51	30.40	36.64	38.67	43.39		
44.75	45.29	46.37	46.77	48.39		
48.87	49.56	52.99	53.70	60.98		
61.65	63.65	64.04	64.20	64.22		
64.54	71.97	74.61	75.42	76.19		
79.48	79.70	81.84	83.49	83.53		
83.97	85.83	87.15	87.45	91.20		
92.28	92.43	93.26	94.01	96.09		
96.48	96.84	99.12	99.95	100.35		
103.28	103.46	104.84	105.28	106.97		
107.81	108.53	110.47	114.45	115.29		
115.87	116.33	120.49	120.61	122.27		
122.29	127.94	128.16	129.81	131.58		
131.70	131.83	132.11	133.17	134.87		
135.14	137.85	138.71	139.79	140.27		
144.25	145.04	145.26	146.83	148.07		
148.69	150.41	150.49	151.01	152.26		
154.77	155.07	167.36	167.92	169.24		
170.62	174.51	174.71	191.26	191.41		
195.37	195.41	198.30	204.25	210.01		
210.04	210.17	212.79	212.86	215.80		
216.07	217.71	217.79	219.59	222.61		
228.86	229.39	229.53	231.31	232.42		
238.55	239.04	243.34	243.73	246.34		
250.03	251.19	253.81	255.17	255.42		
264.96	266.98	311.65	311.80	329.66		
330.67	332.12	332.23	342.05	342.21		
389.45	390.98	394.79	395.03			

Phonon frequency / cm⁻¹