Supporting Information

Realization of efficient and selective NO and NO₂ detection *via* surface functionalized h-B₂S₂ monolayer

Upasana Nath and Manabendra Sarma* Department of Chemistry, Indian Institute of Technology Guwahati Assam- 781039, India Email: <u>msarma@iitg.ac.in</u>

Table of Contents

Equation S1: Calculation of binding energy (E_b) .

Equation S2: Calculation of cohesive energy (*E*_{coh}).

Fig. S1: Projected density of phonon states (PhDOS) plot of Oh-B₂S₂ monolayer.

Fig. S2: (a) Charge density difference (CDD) plot of $h-B_2S_2$ monolayer (blue and pink colors indicate the charge accumulation and depletion region, respectively) and (b) most preferable adsorption configuration and CDD plots of (I) NO and (II) NO₂ adsorbed $h-B_2S_2$ monolayer.

Fig. S3: Electron localization functions of oxygen functionalized $h-B_2S_2$ (Oh- B_2S_2) monolayer. ELF=1.0 (red color) indicates complete localization of electrons, while ELF=0.5 (green color) indicates delocalization. (a) 100-plane and (b) 110-plane.

Table S1: Binding energy (E_b) and S-O bond length of OT-B₂S₂ monolayer using PBE-GGA functional.

Fig. S4: Linear fitting deformation potential and curve fitting elastic modulus plots of h-B₂S₂, Oh-B₂S₂, and MoS₂.

Table S2: Effective mass and deformation potential of electrons and holes, and elastic modulus of MoS_2 and $Oh-B_2S_2$ monolayer.

Fig. S5: Different orientations of (a) CO, (b) NO, (c) CO₂, (d) NO₂, (e) N₂O, and (f) SO₂ molecules on Oh-B₂S₂ monolayer.

Fig. S6: Potential energy curves (PECs) of (a) CO, (b) NO, (c) CO₂, (d) NO₂, (e) N₂O, and (f) SO₂ molecules on Oh-B₂S₂ monolayer.

Table S3: Results obtained from spin-polarized density functional theory (SPDFT).

Table S4: Adsorption energies (E_{ads}), adsorption distances (AD), and charge transfer (Q_e) values of NO and NO₂-adsorbed Oh-B₂S₂ monolayer for 4×4 and 5×5 supercells.

Fig. S7: Spin-polarized density of states (SPDOS) (a) NO and (b) NO_2 -adsorbed $Oh-B_2S_2$ monolayer. Blue and red are the density of states (DOS) of $Oh-B_2S_2$ monolayer and gas molecules, respectively.

Fig. S8: The optimized geometries associated with the favorable adsorption configuration for (a) H_2 , (b) N_2 , (c) O_2 , (d) H_2O , (e) O_3 , and (f) CH_4 on $Oh-B_2S_2$ monolayer.

Table S5: Adsorption energies (E_{ads}) and charge transfer (Q_e) values of NO, NO₂, H₂, N₂, O₂, H₂O, O₃, and CH₄ on Oh-B₂S₂ monolayer.

Fig. S9: Adsorption energies (E_{ads}) and charge transfer (Q_e) plots of NO, NO₂, H₂, N₂, O₂, H₂O, O₃, and CH₄ on Oh-B₂S₂ monolayer.

Fig. S10: Average electrostatic potential plots of (a) $Oh-B_2S_2$, (b) NO-adsorbed $Oh-B_2S_2$, and (c) NO₂-adsorbed $Oh-B_2S_2$ monolayer. The blue and red plots depict the without dipole correction and with dipole correction.

Fig. S11: Transmission spectra T(E) plots of Oh-B₂S₂ at different bias voltages.

Fig. S12: Transmission spectra T(E) plots of NO-adsorbed Oh-B₂S₂ at different bias voltages.

Fig. S13: Transmission spectra T(E) plots of NO₂-adsorbed Oh-B₂S₂ at different bias voltages

Equation S1: Calculation of binding energy (E_b) . [1]

$$E_b = E_{Oh-B_2S_2} - E_{h-B_2S_2} - E_{atom}$$

 $E_{Oh-B_2S_2}$, $E_{h-B_2S_2}$, and E_{atom} indicates the total energy of oxygen functionalized h-B₂S₂, h-B₂S₂ and O-atom.

Equation S2: Calculation of cohesive energy (*E_{coh}*). [2]

$$E_{coh} = \frac{(2E_B + 2E_S + E_O) - E_{Oh - B_2 S_2}}{5}$$

 E_B , E_S , and E_O , are the energy of individual B-atom, S-atom, and O-atom, respectively. and $E_{Oh-B_2S_2}$ is the energy of the oxygen functionalized h-B₂S₂ monolayer.

Fig. S1: Projected density of phonon states (PhDOS) plot of Oh-B₂S₂ monolayer.

Fig. S2: (a) Charge density difference (CDD) plot of $h-B_2S_2$ monolayer (blue and pink colors indicate the charge accumulation and depletion region, respectively) and (b) most preferable adsorption configuration and CDD plots of (I) NO and (II) NO₂ adsorpted $h-B_2S_2$ monolayer.

Fig. S3: Electron localization functions of oxygen functionalized $h-B_2S_2$ (Oh- B_2S_2) monolayer. ELF=1.0 (red color) indicates complete localization of electrons, while ELF=0.5 (green color) indicates delocalization. (a) 100-plane and (b) 110-plane.

Table S1: Binding energy (E_b) and S-O bond length of OT-B₂S₂ monolayer using PBE-GGA functional.

Parameters	Calculated (Our results)	Reported (Previous work [1])
Binding energy (eV)	-4.42	-4.01
S-O bond length (Å)	1.47	1.48

For h-B₂S₂ system

(a) Linear fitting of deformation potential and (b) curve fitting of elastic modulus of h-B₂S₂ monolayer.

Calculated: μ (K- Γ): 1152.25 × 10² cm² V⁻¹ s⁻¹

Reported [3]: μ (K- \varGamma): 1211.67 \times $10^2~cm^2\,V^{-1}\,s$

(a) Linear fitting of deformation potential for the electron, (b) Linear fitting of deformation potential for the hole, and (c) curve fitting of elastic modulus of $Oh-B_2S_2$ monolayer.

Calculated: Electron mobility: μ (K- \varGamma): 790 \times 10 2 cm 2 V- 1 s- 1

Hole mobility: μ (K- $\pmb{\Gamma}$): $32\times 10^2~cm^2\,V^{\text{--}1}\,s^{\text{--}1}$

For MoS₂ system

(a) Linear fitting of deformation potential for the electron, (b) Linear fitting of deformation potential for the hole, and (c) curve fitting of elastic modulus of MoS₂ monolayer.

Calculated: Electron mobility: µ (K-M): 280 cm² V⁻¹ s⁻¹

Hole mobility: μ (K-M): 161 cm² V⁻¹ s⁻¹

Fig. S4: Linear fitting deformation potential and curve fitting elastic modulus plots of h-B₂S₂, Oh-B₂S₂, and MoS₂.

Table S2: Effective mass and deformation potential of electrons and holes, and elastic modulus of MoS_2 and $Oh-B_2S_2$ monolayer.

Systems	Effective mass (M ₀)		Deformation Potential		Elastic Modulus
	electron	hole	electron	hole	(J m ⁻²)
MoS ₂	0.45 (Reported) [4] 0.31 (Calculated)	0.62 (Reported) [4] 0.43 (Calculated)	16.46	4.78	246.60
Oh-B ₂ S ₂	0.11	0.31	3.72	5.2	559.15

Fig. S5: Different orientations of (a) CO, (b) NO, (c) CO₂, (d) NO₂, (e) N_2O , and (f) SO₂ molecules on Oh-B₂S₂ monolayer.

Fig. S6: Potential energy curves (PECs) of (a) CO, (b) NO, (c) CO₂, (d) NO₂, (e) N_2O , and (f) SO₂ molecules on Oh-B₂S₂ monolayer.

Molecule/Supercell	E _{ads} (eV)	AD (Å)	Qe
NO	-0.50	2.45	0.29
NO ₂	-0.12	2.67	0.11

Table S3: Results obtained from spin-polarized density functional theory (SPDFT).

Fig. S7: Spin-polarized density of states (SPDOS) (a) NO and (b) NO_2 -adsorbed Oh-B₂S₂ monolayer. Blue and red are the density of states (DOS) of Oh-B₂S₂ monolayer and gas molecules, respectively.

Table S4: Adsorption energies (E_{ads}), adsorption distances (AD), and charge transfer (Q_e) values of NO and NO₂-adsorbed Oh-B₂S₂ monolayer for 4×4 and 5×5 supercells.

Molecule/Supercell	Eads (eV)	AD (Å)	Qe
NO (3×3)	-0.56	2.45	0.34
NO (4×4)	-0.57	2.45	0.34
NO (5×5)	-0.60	2.46	0.33
NO (3×3)	-0.16	2.65	0.13
NO ₂ (4×4)	-0.17	2.65	0.15
NO ₂ (5×5)	-0.17	2.67	0.14

Fig. S8: The optimized geometries associated with the favorable adsorption configuration for (a) H_2 , (b) N_2 , (c) O_2 (d) H_2O , (e) O_3 , and (f) CH_4 on $Oh-B_2S_2$ monolayer.

Gas Molecule	Orientation	Eads (eV)	Qe
NO	Parallel	-0.56	0.34
-	Through N	-0.50	-
	Through O	-0.54	-
NO ₂	Parallel	-0.16	0.13
-	Through N	-0.08	-
	Through O	-0.15	-
H ₂	Parallel	-0.03	0.004
-	Perpendicular	-0.03	-
N ₂	Parallel	-0.07	0.007
-	Perpendicular	-0.05	-
O ₂	Parallel	-0.09	0.08
-	Perpendicular	-0.07	-
H ₂ O	Parallel	-0.12	0.05
-	Through O	-0.11	-
-	Through H	-0.08	-
O ₃	Parallel	-0.10	0.02
	Perpendicular	-0.06	-
CH ₄	Parallel	-0.10	0.02
	Perpendicular	-0.10	-

Table S5: Adsorption energies (E_{ads}) and charge transfer (Q_e) values of NO, NO₂, H₂, N₂, O₂, H₂O, O₃, and CH₄ on Oh-B₂S₂ monolayer.

Fig. S9: Adsorption energies (E_{ads}) and charge transfer (Q_e) plots of NO, NO₂, H₂, N₂, O₂, H₂O, O₃, and CH₄ on Oh-B₂S₂ monolayer.

Fig. S10: Average electrostatic potential plots of (a) $Oh-B_2S_2$, (b) NO-adsorbed $Oh-B_2S_2$, and (c) NO₂adsorbed $Oh-B_2S_2$ monolayer. The blue and red plots depict the without dipole correction and with dipole correction.

Fig. S11: Transmission spectra T(E) plots of $Oh-B_2S_2$ at different bias voltages.

Fig. S12: Transmission spectra T(E) plots of NO-adsorbed Oh-B₂S₂ at different bias voltages.

Fig. S13: Transmission spectra T(E) plots of NO₂-adsorbed Oh-B₂S₂ at different bias voltages.

References

- 1. Y. Zhang, M. Zhou, M. Yang, J. Yu, W. Li, X. Li and S. Feng, *ACS Appl. Mater. Interfaces*, 2022, **14**, 32330–32340.
- 2. X. Liang, S.-P. Ng, N. Ding and C.-M. L. Wu, Comput. Mater. Sci., 2018, 151, 214–221.
- 3. C. Tang, F. Ma, C. Zhang, Y. Jiao, S. K. Matta, K. Ostrikov and A. Du, *J. Mater. Chem. C*, 2019, **7**, 1651–1658.
- 4. H. V. Phuc, N. N. Hieu, B. D. Hoi, N. V. Hieu, T. V. Thu, N. M. Hung, V. V. Ilyasov, N. A. Poklonski and C. V. Nguyen, *J. Elec. Mater.*, 2018, **47**, 730–736.