Supporting Information

Improved Structure Stability and Performance of LiFeSO₄F Cathode Material for Lithium–Ion Batteries by Magnesium Substitution

Zhendong Guo^{ab}, Tieyang Wang^a, Mingchen Ni^b, Fenhong Song^a, Jing Fan^a, Xiaorui Dong^{b*}, Dashuai Wang^{c*}

a. College of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, PR China

b. College of Science, Northeast Electric Power University, Jilin 132012, PR China

c. Institute of Zhejiang University-Quzhou, Quzhou 324000, PR China

*Corresponding authors: xiaoruidong@yeah.net (X.R. Dong)

dswang@zju.edu.cn (D.S. Wang)

Experimental

1 Preparation of LiFeSO₄F and Mg-substituted LiFeSO₄F composites

Tavorite LiFeSO₄F was prepared by a tetraethylene glycol (TEG) assisted solvothermal method. For the first step, FeSO₄.H₂O was prepared by heating FeSO₄.7H₂O at 100 °C for 3 h in an Ar/H₂ (93:7) atmosphere. The FeSO₄.H₂O precursor was mixed with stoichiometric LiF and then ball-milled for 24 h in acetone. Mg-substituted LiFeSO₄F was prepared by using stoichiometric amounts of a mixedmetal sulfate monohydrate precursor (Fe_{1-x}Mg_x)SO₄•H₂O as precursor. The mixture was transferred into a 43 mL Teflon-lined steel autoclave along with 30 mL of TEG. The autoclave was kept at 260 °C for 60 h to allow the solvothermal reaction. After it was cooled to room temperature naturally, the resulting white–gray powders were washed with acetone several times and then dried in vacuum-oven at 60 °C. The LiFeSO₄F and Mg-substituted LiFeSO₄F samples with different substituted amount were labeled as LFS and LMFS-2 and LMFS-4, respectively.

2 Materials Characterizations

The crystal structures of the materials were studied by X-ray diffraction (XRD) on a Bruker AXS D8 diffractometer with Cu K α radiation. The morphologies of the materials were observed by scanning electron microscope (SEM, JSM-6700F) and transmission electron microscope (TEM, FEI Tecnai G2), respectively. X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB spectrometer using Mg–K α light source. The AC impedance spectroscopy was performed on a Solartron 1260 impedance analyzer. Mössbauer spectroscopy was collected in the

transmission mode using a 57Co/Pd γ -ray source. Velocity calibration was performed with the data of α -Fe at room temperature. The element dissolution test the samples were also measured on an Agilent 725 radially-viewed ICP-OES instrument

3 Calculations

First-principles calculations were performed in the framework of density functional theory (DFT), as implemented in the Vienna ab initio simulation package (VASP).¹ The exchange correlation energy was described by the generalized gradient approximation (GGA) in the scheme proposed by Perdew-Burke-Ernzerhof (PBE).² The projector augmented wave (PAW)³ potential was used with a planewave cutoff energy of 450 eV, and a $2 \times 2 \times 3$ grid was used for the integration over the Brillouin zone, which was enough for convergence of energy. Considering the strong correlation in iron and magnesium elements, electronic structure calculations were performed by using a GGA plus Hubbard U (GGA+U) method, ⁴ where U=4.0 eV was used for the calculations. The spin-polarized method was considered in the calculations. The Bond Valence (BV) Model⁵ ⁶ was used to analyze the Li ion diffusion pathways, and the climbing-image nudged elastic band (CI-NEB) method⁷ was used to analyze the Li ion diffusion energy barriers in the structure. The geometry optimizations were performed by using the conjugated gradient method, and the convergence threshold was set as 1×10^{-5} eV/atom in energy and 0.01 eV/Å in force.

4 Electrochemical measurements

Electrochemical experiments were conducted on CR2032 coin cells using metallic lithium as the anode. The cathode slurry was composed of 70 wt.% active

material, 20 wt.% active carbon and 10 wt.% polyvinylidenefluoride binder which was pasted on an Al current collector. The anode and cathode were separated by a Celgard 2400 membrane. A 1 mol L⁻¹ lithium hexafluorophosphate (LiPF₆) solution dissolving in ethylene carbonate (EC) and diethyl carbonate (DEC) (EC : DEC = 1: 1) was used as the electrolyte. Galvanostatic charge-discharge was performed on a LAND-2010 automatic battery tester in the voltage window of 2.5-4.5 V. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed on a Bio-Logic VSP multichannel potentiostatic-galvanostatic system. The CV curves were collected using a voltage scan rate of 0.1- mV s⁻¹. The impedance data were recorded by applying an ac voltage of 5 mV in the frequency range from 1 MHz to 1 mHz.

Reference

- 1. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865-3868.
- 3. P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 4. A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, *Phys. Rev. B*, 1995, **52**, R5467-R5470.
- 5. I. D. Brown, *Chem. Rev.*, 2009, **109**, 6858-6919.
- 6. J. Gao, G. Chu, M. He, S. Zhang, R. Xiao, H. Li and L. Chen, *Science China Physics, Mechanics & Astronomy*, 2014, **57**, 1526-1536.
- 7. G. Henkelman, B. P. Uberuaga and H. Jónsson, *The Journal of Chemical Physics*, 2000, **113**, 9901-9904.

Figure S1. SEM images of the as-prepared samples: (a) LFS, (b) LMFS-2, (c) LMFS-4.

Figure S2. TEM image of LMFS-2 material.

Figure S3. The contour plots of wave functions of the valence band maximum (VBM, a) and conduction band minimum (CBM, b) of Mg-substituted LiFeSO₄F.

Figure S4. Ion transport path of LiFeSO₄F material.

Figure S5. AC impedance spectroscopy of the LFS and LMFS-2 samples

	X	у	Z	Occ.	Wyckoff Site
Li	0.270	0.629	0.759	1	2i
S	0.323	0.634	0.250	1	2i
0	0.102	0.643	0.344	1	2i
0	0.278	0.769	0.102	1	2i
0	0.320	0.358	0.146	1	2i
0	0.400	0.251	0.589	1	2i
F	0.126	0.917	0.757	1	2i
Fe	0	0	0	1	1a
Fe	0	0	0.5	1	1b

Table S1. The Wyckoff sites of atom in LiFeSO₄F unit cell.

Table S2. The lattice constants of LiFeSO₄F and Mg-substituted LiFeSO₄F.

	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)
LiFeSO ₄ F ($2 \times 2^*1$ supercell)	10.442	11.076	7.388	107.074	106.441	98.476
LiFe _{0.875} Mg _{0.125} SO ₄ F	10.374	11.017	7.276	106.753	107.459	97.894

	Capacity	Voltage	Cycle Performacn	Rate Performan	Structure	Method
Pristine LiFeSO ₄ F ^[20]	0.05C 92 mAh g ⁻¹	3.34 V	0.2C, After 100 cycles, 34.5mAh g ⁻	0.2C, 36 mAh g ⁻¹ 0.5C, 11 mAh g ⁻¹ 1C, 6 mAh g ⁻¹	tavorite	solvotherm al
LiNi _x Fe ₁₋ _x SO ₄ F ^[9]	x = 0.1, 0.1 C, 0.6 Li (~90 mAh g ⁻¹), decreasin g with the Ni content increase,	3.6 V	No decaying after 25 cycles at 0.1 C	~	triclinic	ionotherma 1
LiCo _x Fe ₁₋ _x SO ₄ F ^[9]	X = 0.1, 0.1 C, 0.6 Li (~90 mAh g ⁻¹), decaying with the Co content increase,	3.6 V	No decaying after 25 cycles at 0.1 C	~	triclinic	ionotherma 1
LiMn _x Fe ₁₋ _x SO ₄ F ^[21]	X = 0.1, 0.05 C, 120 mAh g^{-1}	3.9 V	No decaying after 26 cycles at 0.05 C	~	monoclinic	ionotherma 1
LiZn _x Fe ₁ . _x SO ₄ F ^[10]	Sillimano te (20% Zn), 1/15 C, 0.65 Li (~98.15 mAh g ⁻¹) Triplite (10% Zn), 1/15 C, 0.55	3.6V for sillimanit e, 3.9V for triplite	~	~	x < 0.05, tavorite, 0.05 <x<0. 15 triplite x>0.15 sillimanite</x<0. 	Ceramic

Table S3 The electrochemical properties of LiFeSO₄F with different ions substitution

LiTi _x Fe ₁₋	x = 0.02, 3.6 V	0.1 C, after	1 C, 43 tavorit	e solvotherm
_x SO ₄ F ^[11]	0.1 C,	100 cycles	mAh g ¹ ,	al
	124.8	102.5 mAh	2 C 24.4	
	mAh g ⁻¹ ,	g-1	mAh g ⁻¹ ,	
LiMg _x Fe _{1-x} SO ₄ F	x = 0.02, 3.6 V	0.1 C, after	1 C, 33.3 tavorit	e solvotherm
(This work)	0.1 C,	100 cycles	mAh g ¹ ,	al
	101.1	89 mAh g ⁻¹	2 C 16.8	
	mAh g-1		mAh g ⁻¹ ,	

Table S4.	The concentration	of the Li,	Fe, Mg	element afte	r cycle.
		,			

Table S4. The concentration of the Li, Fe, Mg element after cycle.					
Element	Concententian (ma/I)	Relative Standard	Standard Deviation		
	Concentation (mg/L)	Deviation (RSD%)	(SD%)		
Li	409.685	0.9	3.64532		
Fe	0.001451	10.6	0.003836		
Mg	0.026860	3.8	0.013950		