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S1 Computations Details at the Frozen Equilibrium Structure

General setup

Photophysical properties are calculated with density functional theory (DFT) and its time-

dependent version (TD-DFT) at the B3LYP/def2-SVP[1–4] level of theory, as implemented in

the program package Gaussian 16, revision C.01[5]. In particular, the ground state geometries

are optimized with DFT, and single point energies for the electronic excited states are obtained

with TD-DFT over 30 singlets. Solvent effects for chloroform (as used in the experimental

work[6, 7]) are included implicitly using the polarizable conductor-like calculation model[8, 9]

by placing the solute in a cavity within the solvent reaction field. Dispersion interaction effects

are corrected empirically using Grimme’s D3 model with Becke-Johnson damping[10, 11]. The

geometry optimization is performed with tighter cutoffs on forces and step size (tight keyword

in Gaussian 16). The convergence of the geometry optimization is confirmed by the absence of

imaginary frequencies within the harmonic approximation. Natural transition orbitals (NTOs)

are computed with the TheoDORE program package[12] and visualized using Jmol[13].

Computation of vibrationally-resolved spectra

Vibrationally-resolved spectra are computed using the Franck–Condon Herzberg–Teller method

developed by Barone and coworkers[14, 15] and implemented in Gaussian 16, revision C.01[5].

This method computes the nuclear wavefunctions within the harmonic approximation as well

as the change of TDMs with respect to the normal coordinates of the molecule in a first order

approximation to account for symmetry-allowed and symmetry-forbidden transitions. For this,

an estimation of the potential energy surface (PES) in the harmonic approximation is needed,

which is generated by performing a frequency calculation on the optimized minimum structures

of the states involved in the transition. For the excitation from the ground state to the S1, the

optimized ground state and the optimized first singlet excited state structures were used. For

the excitation to the S4, we used the optimized ground state structure and also optimized the

minimum of the emissive state in the donor, which is the S4 at the Franck-Condon region (as

referred to in the main manuscript), but actually the S3 at its equilibrium geometry. For the

sake of clarity, we refer to this state as the S4 both in the main manuscript as well as here in the

SI, even though it is not always a strictly energetic labelling. The spectra are convoluted from

the vertical transitions using Gaussian functions of a full width at half maximum of 0.08 eV.

S2 MD Simulation Protocol

The MD simulations are performed using the program packages Amber20 and AmberTools21[16].

BPDI-PDI is described using the Generalized Amber Force Field (GAFF)[17] included in Am-

berTools21. The electrostatic potential for BPDI-PDI is computed using the DFT level of theory

described above and fitted to the nuclei using the restrained electrostatic potential atomic par-

tial charges (RESP) scheme using the antechamber program included in AmberTools21. Initial

conditions are generated by embedding the solute in a truncated octahedral box of chloroform
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molecules described using the force field parameters provided by AmberTools21. The size of the

box is chosen such that every atom of the solute is at least 20 Å apart from any border of the

box. The system is minimized using the Amber module pmemd in 5,000 minimization cycles

employing a steepest descent algorithm, and another 5,000 additional steps using a conjugate

gradient algorithm.

For all MD simulations, a time step of 2 fs is used. This large time step is enabled by turning

on the SHAKE algorithm[18], which freezes hydrogen bond lengths at a relative geometrical tol-

erance of 1e-7. Constant pressure periodic boundary conditions are superimposed with isotropic

pressure scaling. The cutoff for non-bonded interaction terms is set to 10 Å. The simulation is

performed using the GPU (CUDA) version of pmemd[19–21].

The minimized system is subsequently heated using the Langevin thermostat at a collision

frequency of 1.0 ps−1 to 100 K in 2,500 time steps (5 ps), followed by a heating to 300 K in

50,000 steps (100 ps). The first heating is performed at a pressure relaxation time of 1 ps, which

is increased to 2 ps for the second heating phase only. The analysis of the simulation trajectories

is performed using the program CPPTRAJ[22]. Visualization is done using the molecular viewer

VMD[23].

S3 Role of Intermolecular Energy Transfer

In order to elucidate the possibility of intermolecular RET between different BPDI-PDI molecules,

two dyads are placed into a chloroform box in close proximity (Figure S1).

Figure S1: Starting structure of the simulation with two full BPDI-PDI molecules.

The system is propagated for 280 ns production according to the protocol described above.

For sake of referencing, the dyads are randomly labelled 1 and 2. Consequently, the donor

fragment in molecule 1 is labelled D1, the acceptor in molecule 1 A1, and the respective fragments

in molecule 2 are labelled as D2 and A2. During the simulation, the center-of-mass distance
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Figure S2: Center of mass distance between the acceptor (A) and donor (D) fragments in

molecule 1 and 2 (denoted as subscripts).

between intermolecular fragments (A1-A2, A1-D2, D1-A2, D1-D2) is tracked.

As seen in Figure S2, the molecules move apart within the first 25 ns, with distances quickly

exceeding 40 Å. As the periodic box has a side length of about 80 Å, this is the furthest distance

apart possible between the molecules. At around 90-100 ns as well as after 150 ns, the molecules

appear to come closer again, but center-of-mass distances rarely fall short of 10 Å. On the whole,

there is no attractive interaction visible between the two molecules. In general, the distances

between the fragments are so large, that, even though intermolecular energy transfer can not

be entirely ruled out, its contribution seems irrelevant compared to the efficient intramolecular

energy transfer, computed in the main text to occur in the picosecond regime.

S4 Computational Details at the Thermal Ensemble

Overview

In order to compute the electrostatic interaction factor |VDA|2 for the thermal ensemble, we

employed a hybrid QM/MM (quantum mechanics/molecular mechanics) approach, as described

below. First, we generate 100 structures from a 1 ns MM-MD simulation carried out with

Amber20. Then, these MM geometries are relaxed by performing a QM/MM-MD propaga-

tion during a random time between 150-200 fs, such that not all the geometrical parameters

coherently converge to the same structures. In order to simulate the dyad in its appropriate

electronic state in the QM/MM simulations, we first perform a ground state propagation of

the entire dyad, which serves as a reference and justification for partitioning the system into

individual QM regions for the donor and acceptor molecule. Then, the acceptor is described

in the electronic ground state, and the donor in the electronic S1 excited state. The environ-

ment is described within the classical MM approach using electrostatic embedding. We perform

two dynamics simulations for each structure, on of the donor region (in the excited state), one

of the acceptor region (in the ground state). The simulation is performed with Amber20 and

Terachem[24–26]. Finally, using randomized QM/MM snapshots of BPDI-PDI, single point TD-

DFT calculations at the B3LYP/def2-SVP level of theory as implemented in Gaussian 16[5] are
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performed to yield the TDMs. As above, the environment is represented by point charges in

these calculations. Below we provide details on each of these computational steps.

QM/MM equilibration of the entire dyad

Our first step is to perform MD simulations of the truncated BPDI-PDI dyad (see Figure 1 of

the main text) in chloroform, according to the simulation protocol described in Section S2. The

system is propagated during 1 ns in a single trajectory, from which snapshots are taken every

10 ps to yield 100 structures. On each of these 100 structures, we carry out a QM/MM-MD

simulation at the B3LYP/def2-SVP level of theory in order to relax the bond lengths and angles

from the inferior force field geometries to the more accurate DFT geometries.

In order to properly compute the energy transfer, the dyad needs to be propagated in its

electronic state directly prior to the transfer. Usually, this is the minimum energy geometry of

the energy donating state (S4 in the frozen equilibrium structure). However, during dynamics

simulations, it is quite common that the electronic states switch their energetic order due to

geometrical distortions, so that a state of one character is, for instance, the fourth-lowest in

energy in a particular time step, but might be third-lowest or fifth-lowest in the next time

step. This behavior has been observed already at the S4 optimization step (which finally was

optimized as the S3, see Section S1) and it was also present during the simulations. Therefore,

we opt for an alternative approach, i.e. we partition the molecule into two separate QM regions,

one for the acceptor fragment, another for the donor fragment. This simplifies the selection of

the correct state, as outlined below. Naturally, such a partitioning is only possible assuming

there is no wave function delocalization of one excitation over more than one fragment at a

time. That there is no wave function overlap for the bright, low-energy excitations in the frozen

equilibirum is evidenced by the NTOs shown in Figure 2b of the main text. Here we show that

this is also the case for the full ensemble; therefore, we propagate the entire dyad in the QM

region in its electronic ground state at the B3LYP/def2-SVP level of theory, as implemented in

Terachem, version 1.9.2018.07-dev[24–26]. Point charges from the solvent atoms are included in

the quantum chemical Hamiltonian up to a distance of 8 Å from any atom in the QM region.

The solvent molecules are propagated using MM. We propagate each of the 100 structures for

a random time between 150 and 200 ns on the QM/MM level. The simulation time is chosen

at random within this time frame in order to avoid all the geometrical parameters within the

ensemble to coherently converge to the same values while relaxing from the force field to the

QM level of theory.

Out of the 100 structures, 96 were successfully propagated for the targeted time. The

remaining four trajectories, where the simulation did not converge during some time step, were

excluded from the analysis. On each of the final 96 geometries, we computed 30 singlet excited

states with TD-DFT on the B3LYP/def2-SVP level of theory in Gaussian 16, again including

point charges up to a distance of 8 Å.
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Investigation of the electron localization

We analyzed the transition density matrix of the resulting 2,880 excitations using the TheoDORE

package[12]. We computed to what fraction the excited electron is localized on the donor and

acceptor fragments, irrespective of where the hole is located. This analysis serves to justify the

partitioning into individual QM regions. The partitioning into donor and acceptor corresponds

to what is shown in Figure 1 of the main text, with the linker described as a third fragment.

Figure S3 shows the amount of localization of the excited electron on the donor fragment

plotted against that on the acceptor fragment. This representation shows the counteracting

nature of the localizations: Whenever the localization is high on the donor fragment, it is small

on the acceptor, and vice versa. The trend is very close to linear, which shows that in none of

the 2,880 states, the excited electron is localized on the linker fragment. Instead, in most of

the states, the excited electron is localized one either the donor or the acceptor fragment. This

can be seen better from the histogram in Figure S3 that plots the number of points within a

1%-bin for the localization on the acceptor. About 1,000 are almost fully (> 99.5%) localized

on the acceptor, and almost 1,600 of the excitations are not at all (< 0.5%) localized on the

acceptor, thus mostly localized on the donor. In fact, only 30 excited electronic wave functions

are not localized by at least 90% on either fragment. This analysis justifies that, due to the

exclusive localization of excitations on only one fragment, it is reasonable to partition the dyad

into individual regions, without loosing the main character of the electronic excitations.
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Figure S3: Fraction of localization of the excited state electron on the acceptor and donor

fragments shown as points. A histogram of the number of points in intervals of 1% is overlaid

as a line.

QM/MM equilibration of the individual regions

We justified the partition of the dyad into two QM regions. However, simulations with two QM

regions cannot be performed with Amber20[16]. Thus, we adopt the following procedure in which

for each of the 100 structures obtained from the MM-MD simulation, two QM/MM trajectories

are simulated: one with the donor in the QM region and another with the acceptor in the QM

region. Thus, in total, we perform 200 QM/MM simulations, half of which in the excited state.

In both cases, the respective QM region is described at the B3LYP/def2-SVP level of theory
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and executed with Terachem, version 1.9.2018.07-dev[24–26]. In each case, the remainder of

the system, i.e. the rest of the dyad (including the linker), as well as the solvent molecules, are

placed in the MM region. Whenever a covalent bond crosses the border between regions, the

link atom approach implemented in Amber20 is used. Each of the two paired trajectories are

computed at the QM/MM level for the same random time between 150 and 200 ns.

As stated above, the QM/MM propagations require to choose an electronic state in which

to propagate the respective QM region. For the acceptor fragment, this choice is quite straight-

forward, as the acceptor is in the ground state before the energy is transferred. Thus, we

propagate the acceptor in the electronic ground state. The donor is in the excited state, and

the selected state needs to correspond to the S4 in the dyad, as this is the state we identified

as the donating state. As the S4 in the dyad is the energetically lowest excited state, where

both hole and electron are localized on the donor fragment, this corresponds to the S1 excited

state, when only the donor is in the QM region. Setting the electronic excited state of the

donor region to S1 implies that the propagation will occur in a thermal ensemble around the S1

minimum. This is in line with Kasha’s rule[27], which says that any excited state populations

relax to the lowest excited state of the respective multiplicity prior to emission of radiation.

Very efficient energy transfers might not totally abide to that rule, if they are fast enough to

already occur close to the Franck-Condon region. However, while the energy transfer computed

in the main text occurs within the picosecond time scale, vibrational relaxation usually occurs

in the femtosecond regime[28]. Judging from this difference in time scales, the influence of

energy transfer prior to vibrational relaxation should be insignificant. Additionally, geometrical

changes between the Franck-Condon region and the excited state minimum are, in general, not

very drastic in aromatic molecules, so that we do not have to expect significantly altered energy

transfer efficiencies at the different geometries. Accordingly, propagation in the S1 minimum of

the donor QM region should accurately describe all properties relevant for the energy transfer

rate.

Validity and applicability of the approach

In order to ensure that the properties, especially the TDMs, are still comparable between the

two paired trajectories, we contrast their corresponding structures and compute the heavy-atom

(excluding hydrogens) root mean squared deviation (RMSD, see Figure S4a).

As it can be seen, the bulk of structure pairs exhibit RMSD’s between 0.10 and 0.15 Å,

with the strongest-diverging structures at 0.19 Å. The two structures with the largest structural

difference are exemplary shown in Figure S4b. There are some small displacements of individual

atoms, which can have an impact on the TD-DFT results, such as on the energy gap between

ground and excited states, as well as on the magnitude and directionality of TDMs. These small

displacements between the force field geometries and those obtained from a propagation with

DFT is the reason why we propagate each region with quantum mechanics before computing

excited state properties. However, aside from these small displacements, the general shape

and orientation of the fragments is not different, such that TDM orientations computed on the

accurate, QM geometry can be translated onto the respective fragment propagated with MM.
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Figure S4: a) Heavy-atom RMSD of BPDI-PDI for the 100 pairs of diverging trajectories of

different QM regions. b) Pair of structures with the highest RMSD.

Finally, we used the obtained 100 pairs of BPDI-PDI structures and all chloroform point

charges within 8 Å to any solute atom to perform TD-DFT single point calculation on both of the

QM regions individually using the Gaussian 16[5] protocol (Section S1) to compute the TDMs,

their magnitude and orientation, and used the result to compute the electrostatic interaction

factor |VDA|2.

S5 Character of the excitations in the ensemble

Investigation of the NTOs

In the main text, it was claimed that whenever the angle θD between µ⃗D and the N4-N5 vector

approaches orthogonality, the charge transfer character of the excitation is increased. The NTOs

for two structures representative of this behaviour are shown in Figure 4 of the main manuscript.

These structures exhibit the most extreme values of θD found in the entire ensemble of 100

structures. The structure shown in the left box has the lowest θD at around 0.7◦, and the

structure on the right has the highest θD of around 89.9◦.

Both structures have the electron and the hole in the same two corresponding orbitals,

albeit with different contributions. For both structures, the hole is composed of two π orbitals

localized over the aromatic rings, one symmetric with respect to the mirror plane perpendicular

on the molecular plane, the other antisymmetric. The excited electrons are located in an orbital

described as the linear combination of two orbitals, one delocalized over most of the aromatic

system, as well, but the other is mostly localized on the five-membered ring. However, the

combination of electron and hole between the two structures are swapped: For the structure,

where θD is close to 0◦, excitation is transferred from the antisymmetric hole to the mostly

delocalized electron, and from the symmetric hole to the electron localized mostly on the five-

membered ring. In the other structure with the orthogonal TDM, the antisymmetric hole is

paired with the localized electron, and consequently the symmetric hole with the delocalized

electron. Furthermore, the weights of the transitions are different. In the structure with the
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parallel TDM, 95% of the excitation are between the orbitals which are delocalized over most

of the fragment, and only 5% are associated with a charge transfer to the five-membered ring.

This trend is flipped in the structure, where θD is close to 90◦. Here, 82% of the excitation are

associated with the charge transfer. This increased charge transfer character is responsible for

the altered direction of the TDM, but also the reduction in intensity as discussed in the main

text. Here, the structure with the TDM aligned parallel exhibits a TDM strength of 6.7 au,

while it is only 0.5 au in the structure with the orthogonal TDM.

Comparison between the donor fragment propagated in the ground state and

in the excited state

This increased CT character and, with it, the increased θD angle, is a feature of the ensemble

equilibrated in the excited state. This can be seen in Figure S5, where the θD, the angle between

the TDM on the donor fragment and the N4-N5 vector is shown for the donor equilibrated in the

ground state (Figure S5 left) and after equilibration in the excited state (Figure S5 right). The
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Figure S5: Histograms of the angle θD for the thermal ensemble equilibrated in the ground (left

plot) and the excited state (right plot). The data depicted in the right plot is identical to that

of Figure 3d of the main manuscript. The pictogram on the right is an illustration of the angle’s

geometry.

overall distribution of the angles is comparable between the two. However, in the ground state

ensemble, more angles are close to 0◦, while the excited state ensemble exhibits more TDMs

close to orthogonal to the N4-N5 vector. This implies, that the CT character of the donating

state increases upon relaxation towards the excited state minimum. Unfortunately, since in our

approach we do not simulate proper excited state relaxation dynamics, but merely switch the

state of interest in the QM region from ground state to excited state, our data does not give

insights into the time scales on which this character is altered during excited state relaxation.
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S6 Details on the RET rate computation

For each of the 100 structures in the thermal ensemble, each represented as two QM/MM

structures pairs (Section S5), we compute the electrostatic interaction factor |VDA|2. For this,

we need to compute the distance between the donor and the acceptor fragment. Again, we

use the definition for the fragment centers as the midpoint of the respective N-N connecting

vector as described above. At these short intramolecular distances and with frontier orbitals

delocalized over the entire π manifolds of the respective fragments, these centers are not an

ideal description of the de facto interaction centers. First, the interaction between electron

densities in closer proximity will most certainly exceed those of further apart fractions. At

larger distances, where the total distance is much bigger than the diameter of the fragments,

this effect is negligible, but at the comparatively short distances we are dealing with here, a

point-dipole interaction on a nucleus-nucleus basis could provide more accurate results. Second,

our definition of a fragment center is not equivalent to other definitions, such as the center of

mass. This is most notably the case for the donor fragment, where, due to its reduced symmetry

compared to the acceptor fragment, the center of mass is shifted closer to the acceptor than the

midpoint between N4 and N5 is. Nevertheless, we deem this N-N connecting vector approach

very intuitive and easy to interpret, and believe that due to likely cancellation of the described

errors, this is still a suitable representation. For computing |VDA|2, we used a refractive index η

of 1.44 for chloroform in the visible region[29].

With |VDA|2 and J , the RET rate can be straightforwardly computed as,

kRET =
1

ℏ2c
|VDA|2J =

1

ℏ2c
∗ 5.2× 10−44J2 ∗ 7.44× 10−5m = 1.2× 1012s. (1)
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