Supporting Information

for

Theoretical insights into dopamine photochemistry adsorbed on graphene-type nanostructures

by

Alex-Adrian Farcaş and Attila Bende

National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath str., RO-400293, Cluj-Napoca, Romania; e-mail: attila.bende@itim-cj.ro (A. Bende)

Contents

1. UV-Vis adsorption and excited state relaxation for dopamine-o-quinone (DAQ)	2
2. Electronic excited states and theoretical UV-absorption spectra for GrNP- and GrS-type graphene structures	3
3. Electronic excited states and theoretical UV-absorption spectra for GrNP – DA binary complex	6
4. Electronic excited states and theoretical UV-absorption spectra for GrNP – DAQ binary complex	9

1. UV-Vis adsorption and excited state relaxation for dopamine-o-quinone (DAQ)

Table S1. The excitation energy (in eV and nm in parenthesis), oscillator strength and the orbital transition with the largest coefficient computed for the first 14 electronic excited states of the dopamine-o-quinone at TDDFT/ ω B97X-D3BJ/def2-TZVPP level of theory (H = HOMO and L = LUMO).

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇
Energy	2.36	3.79	3.93	5.44	6.19	6.38	6.53
	(526)	(327)	(315)	(228)	(200)	(194)	(190)
Osc. Str.	0.00003	0.00001	0.07752	0.00001	0.00019	0.17737	0.00000
Orb. Trans.	$H\toL$	$H-3 \rightarrow L$	$\rm H-1 \rightarrow L$	$H - 2 \rightarrow L$	$H \rightarrow L + 1$	$H - 4 \rightarrow L$	$H \rightarrow L + 2$
	S ₈	S ₉	S ₁₀	S11	S ₁₂	S ₁₃	S14
Energy	6.82	6.89	7.12	7.37	7.64	7.77	7.80
	(182)	(180)	(174)	(168)	(162)	(160)	(159)
Osc. Str.	0.02025	0.00012	0.00038	0.27744	0.78035	0.00614	0.06234
Orb. Trans.	$H-2 \rightarrow L+3$	$H-6 \rightarrow L$	$H - 8 \rightarrow L$	$H-1 \rightarrow L+1$	$H-1 \rightarrow L+2$	$\rm H-12 \rightarrow L$	$H - 7 \rightarrow L$

Figure S1. Theoretical UV-absorption spectra for DAQ, computed at TDDFT/ ω B97X-D3BJ/def2-TZVPP level of theory.

2. Electronic excited states and theoretical UV-absorption spectra for GrNP- and GrS-type graphene structures

Figure S2. Theoretical UV-absorption spectra for GrNP- (*a*) and GrS-type (*b*) graphene nanoparticle geometries, computed at TDDFT/ωB97X-D3BJ/def2-TZVPP level of theory.

Table S2. The excitation energy, oscillator strength and the largest orbital transition coefficients of the first 30 electronic excited states computed for the GrNP- and GrS-type graphene nanoparticle geometries at TDDFT/ ω B97X-D3BJ/def2-TZVPP level of theory (H = HOMO and L = LUMO). The most relevant electronic excited states are marked with red color.

	GrNP				GrS				
Nr.	Freq. (nm)	Strength	orb. trans.	Nr.	Freq. (nm)	Strength	orb. trans.		
S ₁	537.1	1.7945	$H \rightarrow L$	S ₁	677.0	1.8644	$H \rightarrow L$		
S ₂	373.7	0 0823	$H \rightarrow L+1$	S.	435.0	0.0007	$H \rightarrow L+2$		
		0.0825	$H-1 \rightarrow L$	32					
S_3	373.2	0.0002	$H \rightarrow L+2$	S ₃	424.7	0.1096	$H \rightarrow L+1$		
S 4	262.2	0,0000	$H-3 \rightarrow L$	c	399.9	0.0011	$H-3 \rightarrow L$		
	505.2	0.0009		54			$H \rightarrow L+3$		
S_5	355.9	0.0000	$H \rightarrow L+3$	S_5	399.4	0.0001	$H-2 \rightarrow L$		
S_6	339.3	0.0017	$H \rightarrow L+5$	S ₆	391.9	0.0061	$H-1 \rightarrow L$		
S ₇	324.9	0.0006	$H-1 \rightarrow L$	c	366.0	0.0020	$H \rightarrow L+4$		
			$H \rightarrow L+1$	37					
S_8	321.6	0.0055	$H-2 \rightarrow L$	S ₈	364.9	0.0002	$H \rightarrow L+5$		
c	312.3	0.1052	$H \rightarrow L+7$	c	346.6	0.1074	$H \rightarrow L+6$		
39				39			$H \rightarrow L+7$		
S ₁₀	303.5	0.0790	$H-5 \rightarrow L$	S ₁₀	333.9	0.0446	$H-6 \rightarrow L$		
S	302.7	302.7	302.7	0.0100	$H \rightarrow L+7$	S.,	330.6	0 0131	₩_>\+7
511		0.0100	$H-2 \rightarrow L$	511	330.0	0.0131			
S.a	294.0	0.0282	$H-1 \rightarrow L+5$	Suc	315.2	0.0218	$H-5 \rightarrow L$		
3 12			$H \rightarrow L+8$	8			$H \rightarrow L+8$		
S_{13}	284.5	0.0150	$H \rightarrow L+9$	S ₁₃	308.2	0.0051	$H \rightarrow L+9$		
S_{14}	281.1	0.0032	$H-4 \rightarrow L$	S ₁₄	301.8	0.0105	$H-4 \rightarrow L$		
S ₁₅	267.2	67.2 0.0201	$H-6 \rightarrow L$	S.	296.2	0.0115	$H \rightarrow L+8$		
				J 15			$H-8 \rightarrow L$		

¹ The length of each C–C bond was fixed to 1.42 Å.

S ₁₆		0.0041	$H-5 \rightarrow L$	S	285.2		$H-5 \rightarrow L$
	205.0	0.0041	$H-7 \rightarrow L$	316		0.0585	$H \rightarrow L+7$
S ₁₇	261.3	0.0310	$H-9 \rightarrow L$	S ₁₇	283.2	0.7067	$H-3 \rightarrow L$
S ₁₈	260.6	1.5476	$H \rightarrow L+4$	S ₁₈	281.3	0.7330	$H-7 \rightarrow L$
S ₁₉	258.7	0.0096	$H-3 \rightarrow L+2$	S ₁₉	277.8	0.0177	$H \rightarrow L+11$
S ₂₀	257.4	0.0000	$H-9 \rightarrow L$	S ₂₀	273.8	0.5347	$H \rightarrow L+10$
S ₂₁	254.8	0.5355	$H \rightarrow L+10$	S ₂₁	271.5	0.0024	$H-9 \rightarrow L$
c	252.0	0.0046	$H-2 \rightarrow L+3$	c	266.2	0.0001	$H-2 \rightarrow L+4$
322	252.0	0.0046		322	200.5	0.0001	$H \rightarrow L+13$
S ₂₃	250.2	0 2210	$H \rightarrow L+11$	c	262.0	0 0202	$H-3 \rightarrow L+2$
	250.5	0.5219		323	205.0	0.0502	$H-2 \rightarrow L+3$
S ₂₄	245.2	0.0256	$\text{H-10} \rightarrow \text{L}$	S ₂₄	260.9	0.0289	$H-1 \rightarrow L+1$
S ₂₅	241.6	0.4908	$H-2 \rightarrow L+4$	S ₂₅	259.1	0.1202	$H-10 \rightarrow L$
c	220 1	0.0014	$H-2 \rightarrow L+5$	c	250 6	0.0000	$H-7 \rightarrow L$
326	230.4	0.0014		326	236.0	0.0000	$H \rightarrow L+9$
S	222 E	0 1506	$H-1 \rightarrow L+4$	S	250.2		$H-10 \rightarrow L$
327	232.3	0.1300		327	230.2	0.0032	$H-2 \rightarrow L+5$
S ₂₈	2222	0 0022	$H-1 \rightarrow L+2$	c	248.5	0.0873	
	232.5	0.0022	$H-2 \rightarrow L+1$	328			$\Pi^{-}I \rightarrow L^{+}4$
S ₂₉	229.3	0.0204	$H-1 \rightarrow L+3$	S ₂₉	242.6	0.0393	$H-1 \rightarrow L+4$
S ₃₀	7 200	0 2266	$H-3 \rightarrow L+1$	S	242.2	0 1220	
	220.7	0.2500	$H-1 \rightarrow L+4$	3 30		0.1338	Π-1 → L+3

Table S3. The natural difference orbitals (NDO) between the ground and the given electronic excited state computed for the the GrNP- and GrS-type graphene geometries at TDDFT/ ω B97X-D3BJ/def2-TZVPP level of theory.

3. Electronic excited states and theoretical UV-absorption spectra for GrNP – DA binary complex.

Table S4. The frontier (HOMO and LUMO) orbitals of the isolated DA computed at ω B97X-D3BJ/def2-TZVPP level of theory.

Table S5. The natural difference orbitals (NDO) between the ground and the given electronic excited state computed for the GrNP-DA binary complex at TDDFT/ ω B97X-D3BJ/def2-TZVPP level of theory (Blue = hole, Yellow = electron, orbital orders with red text color are specific to DA and blacks are graphene-types).

Table S5 (cont.). The natural difference orbitals (NDO) between the ground and the given electronic excited state computed for the GrNP-DA binary complex at TDDFT/ ω B97X-D3BJ/def2-TZVPP level of theory (Blue = hole, Yellow = electron, orbital orders with red text color are specific to DA and blacks are graphene-types).

Table S5 (cont.). The natural difference orbitals (NDO) between the ground and the given electronic excited state computed for the GrNP-DA binary complex at TDDFT/ ω B97X-D3BJ/def2-TZVPP level of theory (Blue = hole, Yellow = electron, orbital orders with red text color are specific to DA and blacks are graphene-types).

4. Electronic excited states and theoretical UV-absorption spectra for GrNP – DAQ binary complex.

Table S6. The frontier (HOMO and LUMO) orbitals of the isolated DAQ computed at ω B97X-D3BJ/def2-TZVPP level of theory.

Table S7. The natural difference orbitals (NDO) between the ground and the given electronic excited state computed for the GrNP-DAQ binary complex at TDDFT/ ω B97X-D3BJ/def2-TZVPP level of theory (Blue = hole, Yellow = electron, orbital orders with red text color are specific to DA and blacks are graphene-types).

Table S7 (cont.). The natural difference orbitals (NDO) between the ground and the given electronic excited state computed for the GrNP-DAQ binary complex at TDDFT/ ω B97X-D3BJ/def2-TZVPP level of theory (Blue = hole, Yellow = electron, orbital orders with red text color are specific to DA and blacks are graphene-types).

Table S7 (cont.). The natural difference orbitals (NDO) between the ground and the given electronic excited state computed for the GrNP-DAQ binary complex at TDDFT/ ω B97X-D3BJ/def2-TZVPP level of theory (Blue = hole, Yellow = electron, orbital orders with red text color are specific to DA and blacks are graphene-types).

