
S1

Supporting Information for

Refining DIIS algorithms for Si and GaAs solar cells: Incorporation of weight

regularization, conjugate gradient, and reverse automatic differentiation

techniques

Zhaosheng Zhang*, Sijia Liu and Yingjie Zhang

College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China

*misaraty@163.com

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2024

S2

Table S1 Implementation of the DIIS algorithm in Julia language

DIIS Solver Function

function DIIS_Solver(f, x0, max_iter; tol, diis_max_size=5)
 mixing_factor = 1.0 # Set the initial mixing factor
 x = x0 # Initialize the solution with the initial guess
 fx = f(x) # Apply the function to the initial guess
 residuals = [fx - x] # Initialize the list of residuals
 basis = [fx] # Initialize the list of basis functions

 # Iterate up to the maximum number of iterations
 for n = 1:max_iter
 # Break the loop if the latest residual is below the tolerance
 if norm(residuals[end]) < tol
 break
 end

 # DIIS correction when there is more than one residual
 if length(residuals) > 1
 num_res = length(residuals)
 B = zeros(num_res, num_res) # Initialize the B matrix

 # Fill the B matrix with dot products of residuals
 for i = 1:num_res
 for j = 1:num_res
 B[i, j] = dot(residuals[i], residuals[j])
 end
 end

 rhs = zeros(num_res)
 rhs[end] = -1.0

 # Solve for weights using matrix division
 weights = B \ rhs
 weights /= sum(weights) # Normalize the weights

 # Update the solution vector x
 x = zeros(size(x0))
 for i = 1:num_res
 x += weights[i] * basis[i]
 end

S3

 else
 # Simple update if only one residual is present
 x += mixing_factor * residuals[end]
 end

 # Compute the new function value and update residuals and basis
 fx = f(x)
 push!(residuals, fx - x)
 push!(basis, fx)

 # Limit the history size of residuals and basis
 if length(residuals) > diis_max_size
 popfirst!(residuals)
 popfirst!(basis)
 end
 end

 # Return the final solution and convergence status
 return (fixpoint = x, converged = norm(residuals[end]) < tol)
end

S4

Table S2 Implementation of the Weighted-DIIS algorithm in Julia language

Weighted-DIIS Solver Function

function Weighted-DIIS_Solver(f, x0, max_iter; tol, diis_max_size=5, lambda=1e-6)
 x = x0 # Initialize the solution with the initial guess
 fx = f(x) # Apply the function to the initial guess
 residuals = [fx - x] # Initialize the list of residuals
 basis = [fx] # Initialize the list of basis functions

 # Iterate up to the maximum number of iterations
 for n = 1:max_iter
 # Break the loop if the latest residual is below the tolerance
 if norm(residuals[end]) < tol
 break
 end

 # DIIS correction when there is more than one residual
 if length(residuals) > 1
 num_res = length(residuals)
 B = zeros(num_res, num_res) # Initialize the B matrix

 # Fill the B matrix with dot products of residuals
 for i = 1:num_res
 for j = 1:num_res
 B[i, j] = dot(residuals[i], residuals[j])
 end
 end

 # Add regularization term to the B matrix
 B += lambda * I

 rhs = zeros(num_res)
 rhs[end] = -1.0

 # Solve for weights using LU decomposition
 weights = B \ rhs
 weights /= sum(weights) # Normalize the weights

 # Update the solution vector x
 x = zeros(size(x0))
 for i = 1:num_res

S5

 x += weights[i] * basis[i]
 end
 else
 # Simple update if only one residual is present
 x += residuals[end]
 end

 # Compute the new function value and update residuals and basis
 fx = f(x)
 push!(residuals, fx - x)
 push!(basis, fx)

 # Limit the history size of residuals and basis
 if length(residuals) > diis_max_size
 popfirst!(residuals)
 popfirst!(basis)
 end
 end

 # Return the final solution and convergence status
 return (fixpoint = x, converged = norm(residuals[end]) < tol)
end

S6

Table S3 Implementation of the CG-Enhanced algorithm in Julia language

CG-Enhanced Solver Function

using IterativeSolvers # Import the IterativeSolvers package for the conjugate gradient method

function CG-Enhanced_Solver(f, x0, max_iter; tol, diis_max_size=5, lambda=1e-6)
 x = x0 # Initialize the solution with the initial guess
 fx = f(x) # Apply the function to the initial guess
 residuals = [fx - x] # Initialize the list of residuals
 basis = [fx] # Initialize the list of basis functions

 # Iterate up to the maximum number of iterations
 for n = 1:max_iter
 # Break the loop if the latest residual is below the tolerance
 if norm(residuals[end]) < tol
 break
 end

 # DIIS correction when there is more than one residual
 if length(residuals) > 1
 num_res = length(residuals)
 B = zeros(num_res, num_res) # Initialize the B matrix

 # Fill the B matrix with dot products of residuals
 for i = 1:num_res
 for j = 1:num_res
 B[i, j] = dot(residuals[i], residuals[j])
 end
 end

 # Add regularization term to the B matrix
 B += lambda * I

 rhs = zeros(num_res)
 rhs[end] = -1.0

 # Solve for weights using the conjugate gradient method
 weights = cg(B, rhs)
 weights /= sum(weights) # Normalize the weights

 # Update the solution vector x

S7

 x = zeros(size(x0))
 for i = 1:num_res
 x += weights[i] * basis[i]
 end
 else
 # Simple update if only one residual is present
 x += residuals[end]
 end

 # Compute the new function value and update residuals and basis
 fx = f(x)
 push!(residuals, fx - x)
 push!(basis, fx)

 # Limit the history size of residuals and basis
 if length(residuals) > diis_max_size
 popfirst!(residuals)
 popfirst!(basis)
 end
 end

 # Return the final solution and convergence status
 return (fixpoint = x, converged = norm(residuals[end]) < tol)
end

S8

Table S4 Implementation of the Jacobian-ReverseDiff algorithm in Julia language

Jacobian-ReverseDiff Solver Function

using ReverseDiff # Using ReverseDiff for automatic differentiation

function Jacobian_ReverseDiff_Solver(f, x0, max_iter; tol, diis_max_size=5, lambda=1e-6)
 x = x0 # Initialize the solution with the initial guess
 fx = f(x) # Apply the function to the initial guess
 residuals = [fx - x] # Initialize the list of residuals
 basis = [fx] # Initialize the list of basis functions

 # Iterate up to the maximum number of iterations
 for n = 1:max_iter
 # Break the loop if the latest residual is below the tolerance
 if norm(residuals[end]) < tol
 break
 end

 # DIIS correction when more than one residual is available
 if length(residuals) > 1
 num_res = length(residuals)
 B = zeros(num_res, num_res) # Initialize the B matrix

 # Fill the B matrix with dot products of residuals
 for i = 1:num_res
 for j = 1:num_res
 B[i, j] = dot(residuals[i], residuals[j])
 end
 end

 B += lambda * I # Add regularization term

 rhs = zeros(num_res)
 rhs[end] = -1.0

 # Calculate weights using Jacobian matrix from ReverseDiff
 weights = ReverseDiff.jacobian((w) -> B * w - rhs, zeros(num_res)) \ rhs
 weights /= sum(weights) # Normalize the weights

 # Update the solution vector x
 x = zeros(size(x0))

S9

 for i = 1:num_res
 x += weights[i] * basis[i]
 end
 else
 # Simple update if only one residual is present
 x += residuals[end]
 end

 # Compute the new function value and update residuals and basis
 fx = f(x)
 push!(residuals, fx - x)
 push!(basis, fx)

 # Limit the history size of residuals and basis
 if length(residuals) > diis_max_size
 popfirst!(residuals)
 popfirst!(basis)
 end
 end

 # Return the final solution and convergence status
 return (fixpoint = x, converged = norm(residuals[end]) < tol)
end

S10

Table S5 Implementation of the Gradient-ReverseDiff algorithm in Julia language

Gradient-ReverseDiff Solver Function

using ReverseDiff # Using ReverseDiff for automatic differentiation

Gradient-ReverseDiff Solver Function
function Gradient_ReverseDiff_Solver(f, x0, max_iter; tol, diis_max_size=5, lambda=1e-6)
 x = x0 # Initialize the solution with the initial guess
 fx = f(x) # Apply the function to the initial guess
 residuals = [fx - x] # Initialize the list of residuals
 basis = [fx] # Initialize the list of basis functions

 # Iterate up to the maximum number of iterations
 for n = 1:max_iter
 # Break the loop if the latest residual is below the tolerance
 if norm(residuals[end]) < tol
 break
 end

 # DIIS correction when more than one residual is available
 if length(residuals) > 1
 num_res = length(residuals)
 B = zeros(num_res, num_res) # Initialize the B matrix

 # Fill the B matrix with dot products of residuals
 for i = 1:num_res
 for j = 1:num_res
 B[i, j] = dot(residuals[i], residuals[j])
 end
 end

 B += lambda * I # Add regularization term

 rhs = zeros(num_res)
 rhs[end] = -1.0

 # Calculate weights using gradient function from ReverseDiff
 weights = ReverseDiff.gradient(w -> sum(w .* (B * w - rhs)), zeros(size(rhs)))
 weights /= sum(weights) # Normalize the weights

 # Update the solution vector x

S11

 x = zeros(size(x0))
 for i = 1:num_res
 x += weights[i] * basis[i]
 end
 else
 # Simple update if only one residual is present
 x += residuals[end]
 end

 # Compute the new function value and update residuals and basis
 fx = f(x)
 push!(residuals, fx - x)
 push!(basis, fx)

 # Limit the history size of residuals and basis
 if length(residuals) > diis_max_size
 popfirst!(residuals)
 popfirst!(basis)
 end
 end

 # Return the final solution and convergence status
 return (fixpoint = x, converged = norm(residuals[end]) < tol)
end

S12

Fig. S1 Electronic minimization algorithm performance in SCF iterations for Si under Ecut15

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S13

Fig. S2 Electronic minimization algorithm performance in SCF iterations for Si under Ecut25

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S14

Fig. S3 Electronic minimization algorithm performance in SCF iterations for Si under K555

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S15

Fig. S4 Electronic minimization algorithm performance in SCF iterations for Si under 777

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S16

Fig. S5 Electronic minimization algorithm performance in SCF iterations for Si under Tol-9

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S17

Fig. S6 Electronic minimization algorithm performance in SCF iterations for Si under Tol-11

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S18

Fig. S7 Electronic minimization algorithm performance in SCF iterations for GaAs under Ecut15

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S19

Fig. S8 Electronic minimization algorithm performance in SCF iterations for GaAs under Ecut25

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S20

Fig. S9 Electronic minimization algorithm performance in SCF iterations for GaAs under K555

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S21

Fig. S10 Electronic minimization algorithm performance in SCF iterations for GaAs under K777

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S22

Fig. S11 Electronic minimization algorithm performance in SCF iterations for GaAs under Tol-9

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

S23

Fig. S12 Electronic minimization algorithm performance in SCF iterations for GaAs under Tol-11

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS,

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into

their relative effectiveness and efficiency in the SCF process.

