Supporting Information for

Refining DIIS algorithms for Si and GaAs solar cells: Incorporation of weight

regularization, conjugate gradient, and reverse automatic differentiation

techniques

Zhaosheng Zhang^{*}, Sijia Liu and Yingjie Zhang

College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China

*misaraty@163.com

Table S1 Implementation of the DIIS algorithm in Julia language

DIIS Solver Function

```
function DIIS Solver(f, x0, max iter; tol, diis max size=5)
     mixing factor = 1.0 # Set the initial mixing factor
     x = x0 # Initialize the solution with the initial guess
     fx = f(x) # Apply the function to the initial guess
     residuals = [fx - x] # Initialize the list of residuals
     basis = [fx] # Initialize the list of basis functions
     # Iterate up to the maximum number of iterations
     for n = 1:max iter
          # Break the loop if the latest residual is below the tolerance
          if norm(residuals[end]) < tol
               break
          end
          # DIIS correction when there is more than one residual
          if length(residuals) > 1
               num res = length(residuals)
               B = zeros(num res, num res) # Initialize the B matrix
               # Fill the B matrix with dot products of residuals
               for i = 1:num res
                    for j = 1:num res
                         B[i, j] = dot(residuals[i], residuals[j])
                    end
               end
               rhs = zeros(num res)
               rhs[end] = -1.0
               # Solve for weights using matrix division
               weights = B \setminus rhs
               weights /= sum(weights) # Normalize the weights
               # Update the solution vector x
               x = zeros(size(x0))
               for i = 1:num res
                    x += weights[i] * basis[i]
               end
```

```
else
         # Simple update if only one residual is present
         x += mixing factor * residuals[end]
    end
    # Compute the new function value and update residuals and basis
    fx = f(x)
    push!(residuals, fx - x)
    push!(basis, fx)
    # Limit the history size of residuals and basis
    if length(residuals) > diis max size
         popfirst!(residuals)
         popfirst!(basis)
    end
end
# Return the final solution and convergence status
return (fixpoint = x, converged = norm(residuals[end]) < tol)
```

end

 Table S2 Implementation of the Weighted-DIIS algorithm in Julia language

Weighted-DIIS Solver Function

```
function Weighted-DIIS Solver(f, x0, max iter; tol, diis max size=5, lambda=1e-6)
     x = x0 # Initialize the solution with the initial guess
     fx = f(x) # Apply the function to the initial guess
     residuals = [fx - x] # Initialize the list of residuals
     basis = [fx] \# Initialize the list of basis functions
     # Iterate up to the maximum number of iterations
     for n = 1:max iter
          # Break the loop if the latest residual is below the tolerance
          if norm(residuals[end]) < tol
               break
          end
          # DIIS correction when there is more than one residual
          if length(residuals) > 1
               num res = length(residuals)
              B = zeros(num res, num res) # Initialize the B matrix
              # Fill the B matrix with dot products of residuals
              for i = 1:num res
                    for j = 1:num res
                         B[i, j] = dot(residuals[i], residuals[j])
                    end
               end
              # Add regularization term to the B matrix
              B += lambda * I
              rhs = zeros(num res)
              rhs[end] = -1.0
              # Solve for weights using LU decomposition
               weights = B \setminus rhs
               weights /= sum(weights) # Normalize the weights
              # Update the solution vector x
              x = zeros(size(x0))
              for i = 1:num res
```

```
x += weights[i] * basis[i]
               end
          else
              # Simple update if only one residual is present
               x += residuals[end]
          end
          # Compute the new function value and update residuals and basis
          fx = f(x)
          push!(residuals, fx - x)
          push!(basis, fx)
          # Limit the history size of residuals and basis
          if length(residuals) > diis_max_size
               popfirst!(residuals)
               popfirst!(basis)
          end
     end
     # Return the final solution and convergence status
     return (fixpoint = x, converged = norm(residuals[end]) < tol)
end
```

Table S3 Implementation of the CG-Enhanced algorithm in Julia language

CG-Enhanced Solver Function

```
using IterativeSolvers # Import the IterativeSolvers package for the conjugate gradient method
function CG-Enhanced Solver(f, x0, max iter; tol, diis max size=5, lambda=1e-6)
     x = x0 # Initialize the solution with the initial guess
     fx = f(x) # Apply the function to the initial guess
     residuals = [fx - x] # Initialize the list of residuals
     basis = [fx] \# Initialize the list of basis functions
     # Iterate up to the maximum number of iterations
     for n = 1:max iter
          # Break the loop if the latest residual is below the tolerance
          if norm(residuals[end]) < tol
              break
          end
          # DIIS correction when there is more than one residual
          if length(residuals) > 1
              num res = length(residuals)
              B = zeros(num res, num res) # Initialize the B matrix
              # Fill the B matrix with dot products of residuals
              for i = 1:num res
                    for j = 1:num res
                         B[i, j] = dot(residuals[i], residuals[j])
                    end
               end
              # Add regularization term to the B matrix
              B += lambda * I
              rhs = zeros(num res)
               rhs[end] = -1.0
              # Solve for weights using the conjugate gradient method
               weights = cg(B, rhs)
               weights /= sum(weights) # Normalize the weights
```

```
# Update the solution vector x
```

```
x = zeros(size(x0))
         for i = 1:num_res
               x += weights[i] * basis[i]
          end
    else
         # Simple update if only one residual is present
         x += residuals[end]
    end
    # Compute the new function value and update residuals and basis
     fx = f(x)
     push!(residuals, fx - x)
     push!(basis, fx)
    # Limit the history size of residuals and basis
    if length(residuals) > diis max size
         popfirst!(residuals)
         popfirst!(basis)
     end
end
# Return the final solution and convergence status
return (fixpoint = x, converged = norm(residuals[end]) < tol)
```

end

Jacobian-ReverseDiff Solver Function

```
using ReverseDiff # Using ReverseDiff for automatic differentiation
function Jacobian ReverseDiff Solver(f, x0, max iter; tol, diis max size=5, lambda=1e-6)
    x = x0 # Initialize the solution with the initial guess
    fx = f(x) # Apply the function to the initial guess
    residuals = [fx - x] # Initialize the list of residuals
    basis = [fx] \# Initialize the list of basis functions
    # Iterate up to the maximum number of iterations
    for n = 1:max iter
         # Break the loop if the latest residual is below the tolerance
         if norm(residuals[end]) < tol
              break
         end
         # DIIS correction when more than one residual is available
         if length(residuals) > 1
              num res = length(residuals)
              B = zeros(num res, num res) # Initialize the B matrix
              # Fill the B matrix with dot products of residuals
              for i = 1:num res
                   for j = 1:num res
                         B[i, j] = dot(residuals[i], residuals[j])
                    end
              end
              B += lambda * I # Add regularization term
              rhs = zeros(num res)
              rhs[end] = -1.0
              # Calculate weights using Jacobian matrix from ReverseDiff
               weights = ReverseDiff.jacobian((w) \rightarrow B * w - rhs, zeros(num res)) \ rhs
               weights /= sum(weights) # Normalize the weights
              # Update the solution vector x
              x = zeros(size(x0))
```

```
for i = 1:num_res
               x += weights[i] * basis[i]
          end
    else
         # Simple update if only one residual is present
         x += residuals[end]
    end
    # Compute the new function value and update residuals and basis
     fx = f(x)
    push!(residuals, fx - x)
     push!(basis, fx)
    # Limit the history size of residuals and basis
    if length(residuals) > diis_max_size
         popfirst!(residuals)
         popfirst!(basis)
     end
end
# Return the final solution and convergence status
return (fixpoint = x, converged = norm(residuals[end]) < tol)
```


Gradient-ReverseDiff Solver Function

```
using ReverseDiff # Using ReverseDiff for automatic differentiation
```

Gradient-ReverseDiff Solver Function

```
function Gradient ReverseDiff Solver(f, x0, max iter; tol, diis max size=5, lambda=1e-6)
```

x = x0 # Initialize the solution with the initial guess

fx = f(x) # Apply the function to the initial guess

residuals = [fx - x] # Initialize the list of residuals

basis = [fx] # Initialize the list of basis functions

```
# Iterate up to the maximum number of iterations
```

```
for n = 1:max_iter
# Break the loop if the latest residual is below the tolerance
if norm(residuals[end]) < tol
            break
end</pre>
```

```
# DIIS correction when more than one residual is available
if length(residuals) > 1
```

```
num_res = length(residuals)
B = zeros(num_res, num_res) # Initialize the B matrix
# Fill the B matrix with dot products of residuals
for i = 1:num_res
    for j = 1:num_res
        B[i, j] = dot(residuals[i], residuals[j])
    end
end
```

```
B += lambda * I # Add regularization term
```

```
rhs = zeros(num_res)
rhs[end] = -1.0
```

```
# Calculate weights using gradient function from ReverseDiff
weights = ReverseDiff.gradient(w -> sum(w .* (B * w - rhs)), zeros(size(rhs)))
weights /= sum(weights) # Normalize the weights
```

Update the solution vector x

```
x = zeros(size(x0))
         for i = 1:num_res
               x += weights[i] * basis[i]
          end
    else
         # Simple update if only one residual is present
         x += residuals[end]
    end
    # Compute the new function value and update residuals and basis
     fx = f(x)
     push!(residuals, fx - x)
     push!(basis, fx)
    # Limit the history size of residuals and basis
    if length(residuals) > diis_max_size
         popfirst!(residuals)
         popfirst!(basis)
     end
end
# Return the final solution and convergence status
return (fixpoint = x, converged = norm(residuals[end]) < tol)
```

end

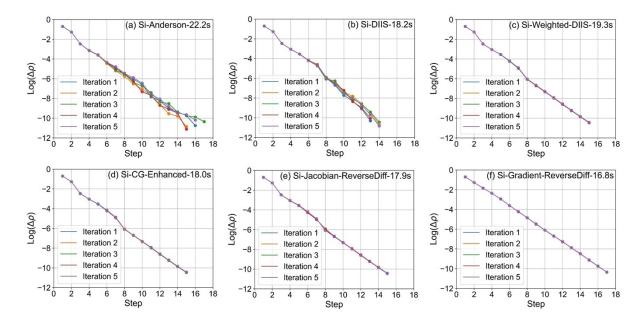


Fig. S1 Electronic minimization algorithm performance in SCF iterations for Si under Ecut15 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

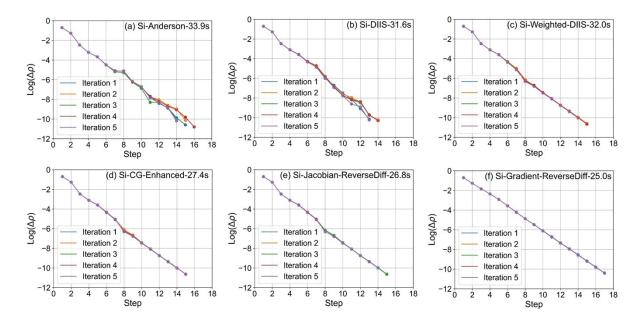


Fig. S2 Electronic minimization algorithm performance in SCF iterations for Si under Ecut25 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

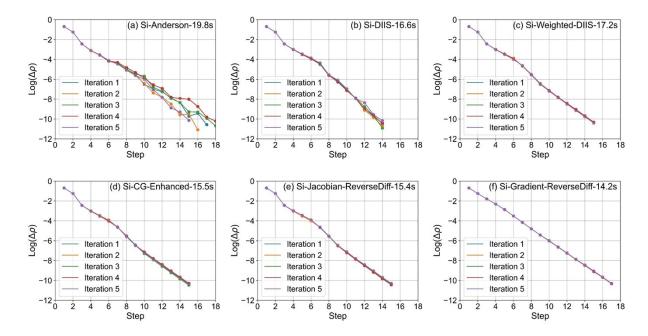


Fig. S3 Electronic minimization algorithm performance in SCF iterations for Si under K555 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

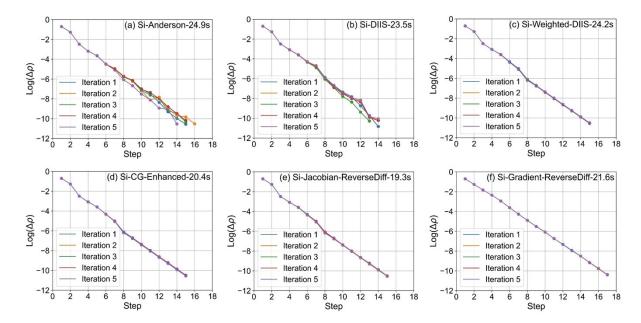


Fig. S4 Electronic minimization algorithm performance in SCF iterations for Si under 777 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

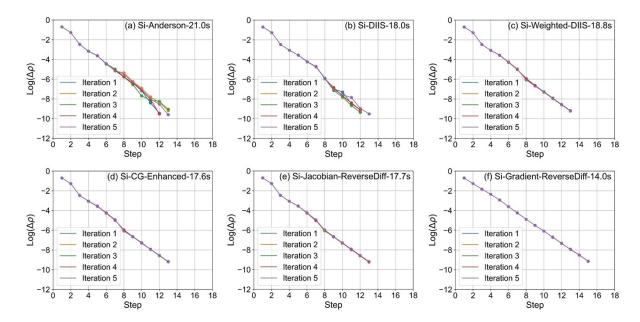


Fig. S5 Electronic minimization algorithm performance in SCF iterations for Si under Tol-9 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

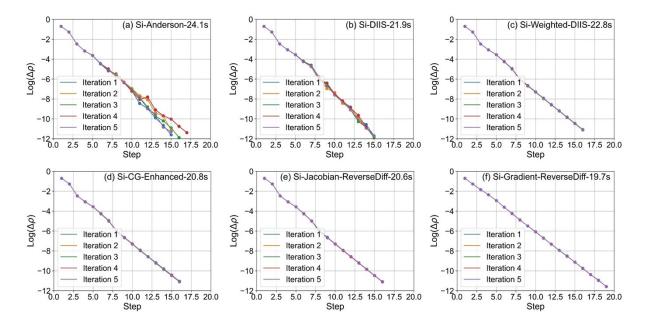


Fig. S6 Electronic minimization algorithm performance in SCF iterations for Si under Tol-11 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

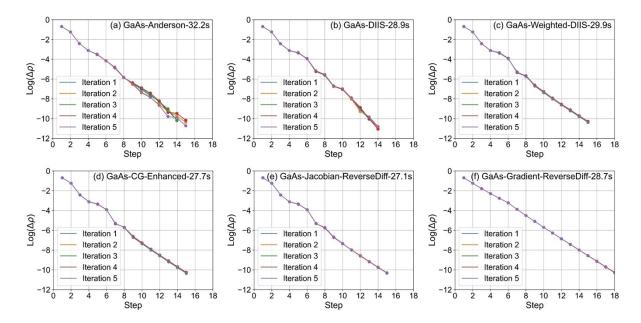


Fig. S7 Electronic minimization algorithm performance in SCF iterations for GaAs under Ecut15 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

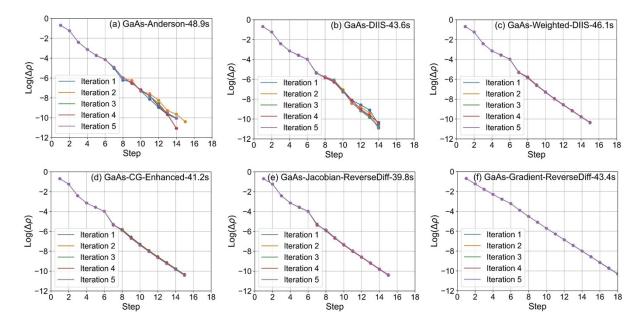


Fig. S8 Electronic minimization algorithm performance in SCF iterations for GaAs under Ecut25 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

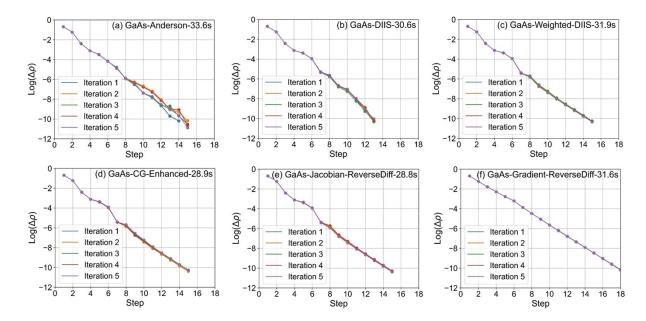


Fig. S9 Electronic minimization algorithm performance in SCF iterations for GaAs under K555 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

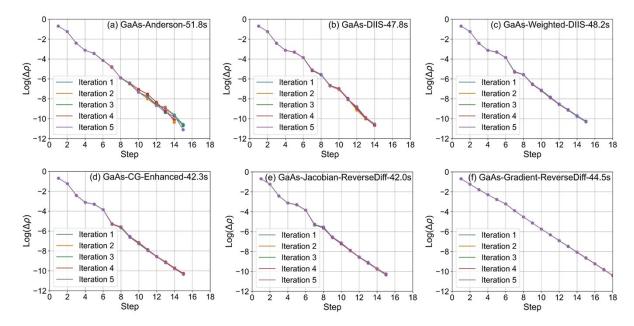


Fig. S10 Electronic minimization algorithm performance in SCF iterations for GaAs under K777 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

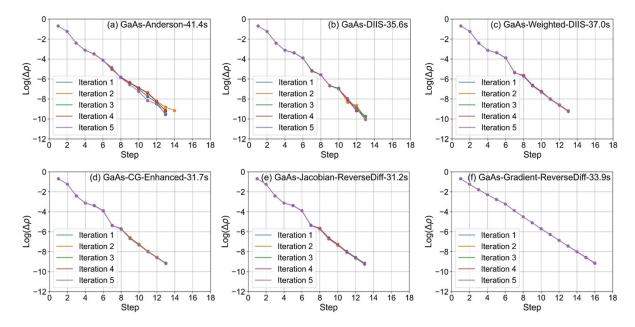


Fig. S11 Electronic minimization algorithm performance in SCF iterations for GaAs under Tol-9 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.

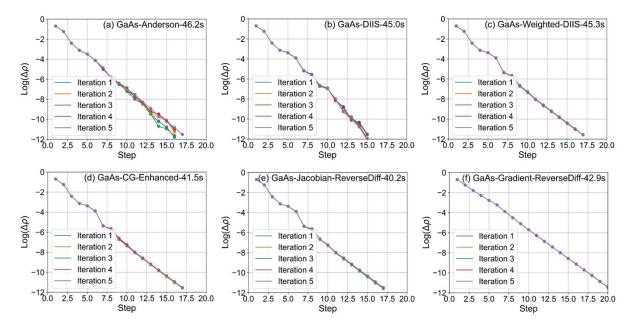


Fig. S12 Electronic minimization algorithm performance in SCF iterations for GaAs under Tol-11 condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, (d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into their relative effectiveness and efficiency in the SCF process.