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Table S1 Implementation of the DIIS algorithm in Julia language

DIIS Solver Function

function DIIS_Solver(f, x0, max_iter; tol, diis_max_size=5)
    mixing_factor = 1.0  # Set the initial mixing factor
    x = x0  # Initialize the solution with the initial guess
    fx = f(x)  # Apply the function to the initial guess
    residuals = [fx - x]  # Initialize the list of residuals
    basis = [fx]  # Initialize the list of basis functions

    # Iterate up to the maximum number of iterations
    for n = 1:max_iter
        # Break the loop if the latest residual is below the tolerance
        if norm(residuals[end]) < tol
            break
        end

        # DIIS correction when there is more than one residual
        if length(residuals) > 1
            num_res = length(residuals)
            B = zeros(num_res, num_res)  # Initialize the B matrix

            # Fill the B matrix with dot products of residuals
            for i = 1:num_res
                for j = 1:num_res
                    B[i, j] = dot(residuals[i], residuals[j])
                end
            end

            rhs = zeros(num_res)
            rhs[end] = -1.0

            # Solve for weights using matrix division
            weights = B \ rhs
            weights /= sum(weights)  # Normalize the weights

            # Update the solution vector x
            x = zeros(size(x0))
            for i = 1:num_res
                x += weights[i] * basis[i]
            end
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        else
            # Simple update if only one residual is present
            x += mixing_factor * residuals[end]
        end

        # Compute the new function value and update residuals and basis
        fx = f(x)
        push!(residuals, fx - x)
        push!(basis, fx)

        # Limit the history size of residuals and basis
        if length(residuals) > diis_max_size
            popfirst!(residuals)
            popfirst!(basis)
        end
    end

    # Return the final solution and convergence status
    return (fixpoint = x, converged = norm(residuals[end]) < tol)
end
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Table S2 Implementation of the Weighted-DIIS algorithm in Julia language

Weighted-DIIS Solver Function

function Weighted-DIIS_Solver(f, x0, max_iter; tol, diis_max_size=5, lambda=1e-6)
    x = x0  # Initialize the solution with the initial guess
    fx = f(x)  # Apply the function to the initial guess
    residuals = [fx - x]  # Initialize the list of residuals
    basis = [fx]  # Initialize the list of basis functions

    # Iterate up to the maximum number of iterations
    for n = 1:max_iter
        # Break the loop if the latest residual is below the tolerance
        if norm(residuals[end]) < tol
            break
        end
        
        # DIIS correction when there is more than one residual
        if length(residuals) > 1
            num_res = length(residuals)
            B = zeros(num_res, num_res)  # Initialize the B matrix
            
            # Fill the B matrix with dot products of residuals
            for i = 1:num_res
                for j = 1:num_res
                    B[i, j] = dot(residuals[i], residuals[j])
                end
            end
            
            # Add regularization term to the B matrix
            B += lambda * I
            
            rhs = zeros(num_res)
            rhs[end] = -1.0
            
            # Solve for weights using LU decomposition
            weights = B \ rhs
            weights /= sum(weights)  # Normalize the weights
            
            # Update the solution vector x
            x = zeros(size(x0))
            for i = 1:num_res
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                x += weights[i] * basis[i]
            end
        else
            # Simple update if only one residual is present
            x += residuals[end]
        end
        
        # Compute the new function value and update residuals and basis
        fx = f(x)
        push!(residuals, fx - x)
        push!(basis, fx)
        
        # Limit the history size of residuals and basis
        if length(residuals) > diis_max_size
            popfirst!(residuals)
            popfirst!(basis)
        end
    end
    
    # Return the final solution and convergence status
    return (fixpoint = x, converged = norm(residuals[end]) < tol)
end
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Table S3 Implementation of the CG-Enhanced algorithm in Julia language

CG-Enhanced Solver Function

using IterativeSolvers # Import the IterativeSolvers package for the conjugate gradient method

function CG-Enhanced_Solver(f, x0, max_iter; tol, diis_max_size=5, lambda=1e-6)
    x = x0  # Initialize the solution with the initial guess
    fx = f(x)  # Apply the function to the initial guess
    residuals = [fx - x]  # Initialize the list of residuals
    basis = [fx]  # Initialize the list of basis functions

    # Iterate up to the maximum number of iterations
    for n = 1:max_iter
        # Break the loop if the latest residual is below the tolerance
        if norm(residuals[end]) < tol
            break
        end

        # DIIS correction when there is more than one residual
        if length(residuals) > 1
            num_res = length(residuals)
            B = zeros(num_res, num_res)  # Initialize the B matrix

            # Fill the B matrix with dot products of residuals
            for i = 1:num_res
                for j = 1:num_res
                    B[i, j] = dot(residuals[i], residuals[j])
                end
            end

            # Add regularization term to the B matrix
            B += lambda * I

            rhs = zeros(num_res)
            rhs[end] = -1.0

            # Solve for weights using the conjugate gradient method
            weights = cg(B, rhs)
            weights /= sum(weights)  # Normalize the weights

            # Update the solution vector x
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            x = zeros(size(x0))
            for i = 1:num_res
                x += weights[i] * basis[i]
            end
        else
            # Simple update if only one residual is present
            x += residuals[end]
        end

        # Compute the new function value and update residuals and basis
        fx = f(x)
        push!(residuals, fx - x)
        push!(basis, fx)

        # Limit the history size of residuals and basis
        if length(residuals) > diis_max_size
            popfirst!(residuals)
            popfirst!(basis)
        end
    end

    # Return the final solution and convergence status
    return (fixpoint = x, converged = norm(residuals[end]) < tol)
end
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Table S4 Implementation of the Jacobian-ReverseDiff algorithm in Julia language

Jacobian-ReverseDiff Solver Function

using ReverseDiff # Using ReverseDiff for automatic differentiation

function Jacobian_ReverseDiff_Solver(f, x0, max_iter; tol, diis_max_size=5, lambda=1e-6)
    x = x0  # Initialize the solution with the initial guess
    fx = f(x)  # Apply the function to the initial guess
    residuals = [fx - x]  # Initialize the list of residuals
    basis = [fx]  # Initialize the list of basis functions

    # Iterate up to the maximum number of iterations
    for n = 1:max_iter
        # Break the loop if the latest residual is below the tolerance
        if norm(residuals[end]) < tol
            break
        end

        # DIIS correction when more than one residual is available
        if length(residuals) > 1
            num_res = length(residuals)
            B = zeros(num_res, num_res)  # Initialize the B matrix

            # Fill the B matrix with dot products of residuals
            for i = 1:num_res
                for j = 1:num_res
                    B[i, j] = dot(residuals[i], residuals[j])
                end
            end

            B += lambda * I  # Add regularization term

            rhs = zeros(num_res)
            rhs[end] = -1.0

            # Calculate weights using Jacobian matrix from ReverseDiff
            weights = ReverseDiff.jacobian((w) -> B * w - rhs, zeros(num_res)) \ rhs
            weights /= sum(weights)  # Normalize the weights

            # Update the solution vector x
            x = zeros(size(x0))
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            for i = 1:num_res
                x += weights[i] * basis[i]
            end
        else
            # Simple update if only one residual is present
            x += residuals[end]
        end

        # Compute the new function value and update residuals and basis
        fx = f(x)
        push!(residuals, fx - x)
        push!(basis, fx)

        # Limit the history size of residuals and basis
        if length(residuals) > diis_max_size
            popfirst!(residuals)
            popfirst!(basis)
        end
    end

    # Return the final solution and convergence status
    return (fixpoint = x, converged = norm(residuals[end]) < tol)
end
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Table S5 Implementation of the Gradient-ReverseDiff algorithm in Julia language

Gradient-ReverseDiff Solver Function

using ReverseDiff # Using ReverseDiff for automatic differentiation

# Gradient-ReverseDiff Solver Function
function Gradient_ReverseDiff_Solver(f, x0, max_iter; tol, diis_max_size=5, lambda=1e-6)
    x = x0  # Initialize the solution with the initial guess
    fx = f(x)  # Apply the function to the initial guess
    residuals = [fx - x]  # Initialize the list of residuals
    basis = [fx]  # Initialize the list of basis functions

    # Iterate up to the maximum number of iterations
    for n = 1:max_iter
        # Break the loop if the latest residual is below the tolerance
        if norm(residuals[end]) < tol
            break
        end

        # DIIS correction when more than one residual is available
        if length(residuals) > 1
            num_res = length(residuals)
            B = zeros(num_res, num_res)  # Initialize the B matrix

            # Fill the B matrix with dot products of residuals
            for i = 1:num_res
                for j = 1:num_res
                    B[i, j] = dot(residuals[i], residuals[j])
                end
            end

            B += lambda * I  # Add regularization term

            rhs = zeros(num_res)
            rhs[end] = -1.0

            # Calculate weights using gradient function from ReverseDiff
            weights = ReverseDiff.gradient(w -> sum(w .* (B * w - rhs)), zeros(size(rhs)))
            weights /= sum(weights)  # Normalize the weights

            # Update the solution vector x
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            x = zeros(size(x0))
            for i = 1:num_res
                x += weights[i] * basis[i]
            end
        else
            # Simple update if only one residual is present
            x += residuals[end]
        end

        # Compute the new function value and update residuals and basis
        fx = f(x)
        push!(residuals, fx - x)
        push!(basis, fx)

        # Limit the history size of residuals and basis
        if length(residuals) > diis_max_size
            popfirst!(residuals)
            popfirst!(basis)
        end
    end

    # Return the final solution and convergence status
    return (fixpoint = x, converged = norm(residuals[end]) < tol)
end
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Fig. S1 Electronic minimization algorithm performance in SCF iterations for Si under Ecut15 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S2 Electronic minimization algorithm performance in SCF iterations for Si under Ecut25 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S3 Electronic minimization algorithm performance in SCF iterations for Si under K555 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S4 Electronic minimization algorithm performance in SCF iterations for Si under 777 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S5 Electronic minimization algorithm performance in SCF iterations for Si under Tol-9 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S6 Electronic minimization algorithm performance in SCF iterations for Si under Tol-11 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S7 Electronic minimization algorithm performance in SCF iterations for GaAs under Ecut15 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S8 Electronic minimization algorithm performance in SCF iterations for GaAs under Ecut25 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S9 Electronic minimization algorithm performance in SCF iterations for GaAs under K555 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S10 Electronic minimization algorithm performance in SCF iterations for GaAs under K777 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S11 Electronic minimization algorithm performance in SCF iterations for GaAs under Tol-9 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.
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Fig. S12 Electronic minimization algorithm performance in SCF iterations for GaAs under Tol-11 

condition specified in Table 1. The algorithms include (a) Anderson, (b) DIIS, (c) Weighted-DIIS, 

(d) CG-Enhanced, (e) Jacobian-ReverseDiff, and (f) Gradient-ReverseDiff, offering insights into 

their relative effectiveness and efficiency in the SCF process.


