Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Unveiling the Quantum Secrets of Triel Metal Triangles: A Tale of Stability, Aromaticity, and Relativistic Effects

Sílvia Escayola^{1,2}, Elisa Jimenez-Izal^{2,3}, Eduard Matito^{3,4}, Jesus M. Ugalde^{2,3}, Rafael Grande-Aztatzi^{2,5,*}, and Jose M. Mercero^{2,3,*}

¹Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, C/ M. Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain ²Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain ³Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi, Spain ⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Euskadi, Spain ⁵Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501, 64849 Monterrey, Nuevo León, México.

April 8, 2024

1 Supporting Information

Table S1 Different properties of the lowest lying energy spin-states of the X_3^- (X= AI, Ga, In and TI) triangles. ΔE is ZPE corrected MCQDP/MCSCF (10,12) relative energy with respect to the singlet in kcal/mol. R corresponds to the equilibrium bond lengths in Å. MCI is the total multicenter index, MCI_{π} is the π contribution to MCI.

Μ	ΔE	$R_{1,3}^{1,2}$	$R_{2,3}$	MCI	MCI_{π}		
Al_3^-							
${}^{1}A'_{1}$	0.0	2.558		0.49	0.23		
${}^{3}\mathrm{B}_{2}^{1}$	7.36	2.543	2.762	0.35	0.22		
${}^{3}\mathrm{A}_{1}^{\dagger}$	7.57	2.651	2.536	0.37	0.23		
$^{3}A_{2}$	12.41	2.619	2.951	0.25	0.03		
$^{3}\mathrm{B}_{1}$	13.39	2.800	2.561	0.27	0.03		
${}^{5}A_{2}^{\prime\prime}$	12.18	2.758		0.12	0.03		
${}^{1}A'_{1}$	0.0	2.576		0.48	0.24		
${}^{3}B_{2}$	7.04	2.552	2.835	0.35	0.23		
$^{3}\mathrm{A}_{1}^{\dagger}$	7.41	2.684	2.504	0.35	0.23		
$^{3}A_{2}$	11.64	2.615	3.075	0.27	0.03		
${}^3\mathrm{B}_1^\dagger$	12.80	3.075	2.558	0.27	0.03		
${}^{5}\mathrm{A}_{2}^{\prime\prime}$	11.93	2.777		0.11	0.03		
	In_3^-						
${}^{1}A'_{1}$	0.0	2.979		0.47	0.22		
${}^{3}B_{2}$	2.54	2.931	3.326	0.32	0.22		
${}^{3}\mathrm{A}_{1}^{\dagger}$	3.05	3.085	2.914	0.32	0.22		
$^{3}A_{2}$	5.59	2.988	3.485	0.26	0.03		
${}^3\mathrm{B}_1^\dagger$	6.74	3.236	2.925	0.26	0.03		
${}^{5}A_{2}^{\prime\prime}$	3.20	3.147		0.10	0.03		
-Tl ₃ ⁻							
$^{1}A'_{1}$	0.0	3.129		0.47	0.22		
${}^{3}\mathrm{B}_{2}^{1}$	-0.71	3.049	3.441	0.29	0.22		
${}^{3}\mathrm{A}_{1}^{\dagger}$	0.09	3.237	3.023	0.29	0.22		
$^{3}A_{2}$	0.57	3.079	3.711	0.25	0.03		
${}^{3}\mathrm{B}_{1}^{\dagger}$	2.58	3.387	3.026	0.26	0.03		
${}^{5}\mathrm{A}_{2}^{\ddot{\prime}\prime}$	-2.94	3.263		0.08	0.03		

† Transition state.

Table S2 Contribution of the different MO sets (see Figure ??) to the atom-pair DIs for the Ga_3^- and In^- different electronic states. The first values of the triplet correspond to the symmetric atom-pair corresponding to the two short bonds while the second corresponds the atoms pairs forming the largest bond.

		Ga_3^-			${\rm In_3}^-$	
MO sets	$^{1}\mathrm{A}_{1}^{\prime}$	${}^{3}\mathrm{B}_{2}$	${}^{5}A_{2}''$	$ {}^{1}A'_{1}$	${}^{3}\mathrm{B}_{2}$	$^{5}A_{2}^{\prime\prime}$
Ψ_{σ}	0.42	0.47/0.31	0.34	0.35	0.40/0.25	0.30
Ψ_{π}	0.32	0.36/0.30	0.16	0.32	0.32/0.35	0.16
Ψ_r	0.26	0.10/0.09	0.07	0.26	0.08/0.09	0.07
Ψ_t	-0.03	0.12/0.03	0.21	-0.02	0.14/0.03	0.22

Table S3 Configuration interaction coefficients (CIC) of the main configurations of the MCSCF wavefunctions of the different triangles studied in the present work (CIC's of 0.09 or larger are shown). Note that the orbitals of the Ψ_{σ} system $((a'_1)^2(e')^2(e')^2$ in D_{3h} , and $(a_1)^2(a_1)^2(b_2)^2)$ are common in all the configurations, and omitted for simplicity.

State		$(a_2'')^2(a_1')^2$	$(a_2'')^2(e')^2$	$(a_1')^2 (e')^2$
${}^{1}A'_{1}$	Al_3^-	0.88	-0.11	-0.09
	Ga_3^-	0.88	-0.11	-0.09
	${\rm In_3}^-$	0.88	-	-
	Tl_3^{-}	0.90	-0.09	-0.11
		$(b_1)^2(a_1)^1(b_2)^1$	$(b_1)^2(b_2)^1(2a_1)^1$	$(a_1)^2(b_2)^1(b_1)^1$
$^{3}\mathrm{B}_{2}$	Al_3^-	0.88	-0.13	-0.11
	Ga_3^-	0.89	-0.12	-0.12
	${\rm In_3}^-$	0.90	-	-0.13
	Tl_3^{-}	0.91	-	-0.15
		$(a_2'')^1(a_1')^1(e')^1(e')^1$		
⁵ A ₂ "	Al_3^-	0.91		
	Ga_3^-	0.92		
	${\rm In_3}^-$	0.92		
	Tl_3^{-}	0.93		