## Supporting information for

## Oxygen evolution reaction on cobalt atoms embedded nitrogen

## doped graphene electrocatalysts: a density functional theory

study

Meijing Liao<sup>a,b,+</sup>, Bing Zhao<sup>a,b,+</sup>, Guangsong Zhang<sup>a,+</sup>, Junhao Peng<sup>a</sup>, Yuexing Zhang<sup>a,\*</sup>, Bin Liu<sup>b,\*</sup>, Xinfang Wang<sup>a,\*</sup>

## Contents

Computational Details on adsorption Gibbs free energy  $\Delta G_{OH^*}$ ,  $\Delta G_{O^*}$ ,  $\Delta G_{OOH^*}$ 

Figure S1-S8. PDOS (partial density of state) of (a) Co atoms, (b) N atoms, (c) C

atoms, and (d) the total DOS in Coxy-NG.

**Figure S9.** PDOS (partial density of state) of (a) N atoms, (b) C atoms, and (c) the total DOS in NG.

**Figure S10.** Energy band structure profile of (a) Co11-NG, (b) Co21-NG, (c) Co22-NG, (d) Co31-NG, (e) Co32-NG, (f) Co41-NG, (g) Co42-NG, (h) Co43-NG, and (i) NG.

Figure S11. The computed free energy profiles and optimized intermediate structure for OER on Coxy-NG (x=1-4,y=1-3).

**Figure S12.** Charge differential density (CDD) of the rate determining step (RDS) of Co22-NG and Co43-NG.

Figure S13.The correlation between the adsorption energy of (a) $\Delta E_{OOH*}$  vs.  $\Delta E_{O*}$  and (b) $\Delta E_{OOH*}$  vs.  $\Delta E_{OH*}$  on various Coxy-NG catalysts.

**Table S1.** The Millikan charges (in e) for each Co atom and all N atoms (total charge) of Coxy-NG (x=1-4, y=1-3).

**Table S2.** The computed binding energies (E<sub>b</sub>, eV), cohesive energies (E<sub>c</sub>, eV), shortest distances between Co and N atoms ( $d_{Co-N}$ , Å), corresponding descriptor ( $\Delta G_{OH*}$ ,  $\Delta G_{O*}$ ,  $\Delta G_{OOH*}$ , all in eV), the RDS barrier (E<sub>RDS</sub>, eV), and overpotential ( $\eta^{OER}$ , V) for Coxy-NG (x=1-4; y=1-3).

# Computational Details on adsorption Gibbs free energy $\Delta G_{OH^*}, \Delta G_{O^*}, \Delta G_{OOH^*}$

The  $\Delta G_{O^*}, \Delta G_{OH^*}$  and  $\Delta G_{OOH^*}$  are obtained by:

$$\begin{aligned} (1a) OH^{-}(aq) + * \to OH^{*} + e^{-} \\ & \Delta G_{1} \\ & = \Delta G_{OH^{*}} = G_{OH^{*}} - E_{*} - G[OH^{-}(aq) - e^{-}] = G_{OH^{*}} - E_{*} - G[H_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_{2}OH_$$

$$= \Delta G_1 + \Delta G_2 + \Delta G_3 = G_{00H^*} + G[H_2O(l)] - E_* - 3 * G[OH^-(aq) - e^-] = G_{00}$$
$$-E_* - 2G[H_2O(l)] + \frac{3}{2}G[H_2(g)] - 2.4831 \text{ eV}$$

$$(1d) OOH^* + OH^{-}(aq) \rightarrow O_2(g) + * H_2O(l) + e^{-} \Delta G_4 = G[O2(g)] + G[H_2O(l)] + E_* - G_{00H^*} - G[OH^{-}(aq) - e^{-}] = 2G[H_2O(l)] - H_2(g)] + 4.9148 \ eV + G[H_2O(l)] + E_* - G_{00H^*} - G[H_2O(l)] + 1/2G[H_2(g)] - 0.8277 \ eV \\ = 2G[H_2O(l)] - \frac{3}{2}G[H_2(g)] + E_* - G_{00H^*} + 4.0871 \ eV$$

(1abcd)  $4OH^{-}(aq) \rightarrow O_{2}(g) + 2H_{2}O(l) + 4e^{-}$  $\Delta G_{O_{2}} = \Delta G_{1} + \Delta G_{2} + \Delta G_{3} + \Delta G_{4} = 1.604 \ eV$ 



**Figure S1.** PDOS (partial density of state) of (a) Co atoms, (b) N atoms, (c) C atoms, and (d) the total DOS in Co11-NG.





**Figure S2**. PDOS (partial density of state) of (a) Co atoms, (b) N atoms, (c) C atoms, and (d) the total DOS in Co21-NG.



Figure S3. PDOS (partial density of state) of (a) Co atoms, (b) N atoms, (c) C atoms,



**Figure S4.** PDOS (partial density of state) of (a) Co atoms, (b) N atoms, (c) C atoms, and (d) the total DOS in Co31-NG.



**Figure S5.** PDOS (partial density of state) of (a) Co atoms, (b) N atoms, (c) C atoms, and (d) the total DOS in Co32-NG.





**Figure S6**. PDOS (partial density of state) of (a) Co atoms, (b) N atoms, (c) C atoms, and (d) the total DOS in Co41-NG.



**Figure S7**. PDOS (partial density of state) of (a) Co atoms, (b) N atoms, (c) C atoms, and (d) the total DOS in Co42-NG.



**Figure S8.** PDOS (partial density of state) of (a) Co atoms, (b) N atoms, (c) C atoms, and (d) the total DOS in Co43-NG.



**Figure S9.** PDOS (partial density of state) of (a) N atoms, (b) C atoms, and (c) the total DOS in NG.





**Figure S10.** Energy band structure profile of (a) Co11-NG, (b) Co21-NG, (c) Co22-NG, (d) Co31-NG, (e) Co32-NG, (f) Co41-NG, (g) Co42-NG, (h) Co43-NG, and (i) NG.







**Figure S11.** The computed free energy profiles and optimized intermediate structure for OER on Coxy-NG (x=1-4,y=1-3).



**Figure S12.** Charge differential density (CDD) of the rate determining step (RDS) of Co22-NG and Co43-NG.

| Catalyst | Charge Population |                                                |        |  |  |  |  |
|----------|-------------------|------------------------------------------------|--------|--|--|--|--|
|          | In-plane Co       | Out-plane Co                                   | Ν      |  |  |  |  |
| Coll-NG  | 0.147             | /                                              | -1.426 |  |  |  |  |
| Co21-NG  | 0.161             | 0.134                                          | -1.498 |  |  |  |  |
| Co22-NG  | \                 | 0.052(Co1), 0.067(Co2)                         | -1.320 |  |  |  |  |
| Co31-NG  | 0.283             | 0.079(Co1), 0.078(Co2)                         | -1.562 |  |  |  |  |
| Co32-NG  | 0.273             | 0.069(Co1), 0.069(Co2)                         | -1.611 |  |  |  |  |
| Co41-NG  | 0.256             | 0.076(Co1), 0.121(Co2), 0.119(Co3)             | -1.617 |  |  |  |  |
| Co42-NG  | \                 | 0.124(Co1),0.124(Co2),0.124(Co3), 0.123(Co4)   | -1.836 |  |  |  |  |
| Co43-NG  | \                 | 0.051(Co1), 0.051(Co2), 0.052(Co3), 0.052(Co4) | -1.327 |  |  |  |  |

**Table S1.** The Millikan charges (in e) for each Co atom and all N atoms (total charge) of Coxy-NG (x=1-4, y=1-3).

**Table S2.** The computed binding energies ( $E_b$ , eV), cohesive energies ( $E_c$ , eV), shortest distances between Co and N atoms ( $d_{Co-N}$ , Å), corresponding descriptor ( $\Delta G_{OH^*}$ ,  $\Delta G_{O^*}$ ,  $\Delta G_{OOH^*}$ , all in eV), the RDS barrier ( $E_{RDS}$ , eV), and overpotential ( $\eta^{OER}$ , V) for Coxy-NG (x=1-4; y=1-3).

| Catalyst     | E <sub>b</sub> | Ec    | d <sub>Co-N</sub> | $\Delta G_{OH^*}$ | $\Delta G_{O^*}$ | $\Delta G_{OOH}$ | E <sub>RDS</sub> | $\eta^{\text{OER}}$ |
|--------------|----------------|-------|-------------------|-------------------|------------------|------------------|------------------|---------------------|
|              |                |       |                   |                   |                  | *                |                  |                     |
| Coll-NG      | -11.25         | -7.67 | 1.90              | 0.28              | 0.90             | 1.65             | 0.75             | 0.34                |
| Co21-NG(Wi)  | -13.17         | -7.49 | 2.03              | 0.20              | 0.73             | 1.58             | 0.85             | 0.45                |
| Co21-NG(Wo)  | -13.17         | -7.49 | 2.03              | -1.75             | -1.43            | -0.16            | 1.77             | 1.37                |
| Co22-        | -11.32         | -7.43 | 1.88              | -1.54             | -2.34            | 0.04             | 2 20             | 1.98                |
| NG(Wo1)      |                |       |                   |                   |                  |                  | 2.30             |                     |
| Co22-        |                |       |                   | -1.95             | -2.35            | -3.12            | 1 72             | 4.33                |
| NG(Wo2)      |                |       |                   |                   |                  |                  | 4.75             |                     |
| Co31-NG(wi)  | -16.13         | -7.35 | 1.90              | 0.11              | 0.79             | 1.50             | 0.71             | 0.31                |
| Co31-NG(wo1) | -16.13         | -7.35 | 1.90              | -2.12             | -2.59            | 0.05             | 2.64             | 2.24                |
| Co31-NG(wo2) |                |       |                   | -2.12             | -2.57            | -3.94            | 5.55             | 5.15                |
| Co32-NG(wi)  | -16.10         | -7.36 | 2.02              | 0.12              | 0.52             | 1.52             | 0.99             | 0.59                |
| Co32-NG(wo1) | -16.10         | -7.36 | 2.02              | -2.06             | -2.47            | -0.97            | 2.58             | 2.18                |
| Co32-NG(wo2) |                |       |                   | -2.06             | -2.46            | -3.84            | 5.45             | 5.05                |
| Co41-NG(wi)  | -19.78         | -7.25 | 2.15              | 0.01              | 0.66             | 1.39             | 0.73             | 0.33                |
| Co41-NG(wo1) | -19.78         | -7.25 | 2.15              | -1.29             | -0.73            | 0.28             | 1.33             | 0.93                |
| Co41-NG(wo2) |                |       |                   | -1.93             | -2.58            | -4.14            | 5.75             | 5.35                |
| Co42-        | -17.40         | -7.18 | 2.02              | -1.48             | -2.08            | 0.46             | 2.54             | 2.14                |
| NG(Wo1)      |                |       |                   |                   |                  |                  | 2.34             |                     |
| Co42-        |                |       |                   | -1.54             | -2.05            | -2.81            | 4 4 2            | 4.02                |
| NG(Wo2)      |                |       |                   |                   |                  |                  | 4.42             |                     |
| Co43-        | -16.48         | -7.15 | 1.91              | -1.49             | -1.25            | -0.07            | 1 6 9            | 1.28                |
| NG(Wo1)      |                |       |                   |                   |                  |                  | 1.08             |                     |
| Co43-        |                |       |                   | -1.59             | -2.21            | -4.74            | 6.25             | 5.95                |
| NG(Wo2)      |                |       |                   |                   |                  |                  | 0.33             |                     |