Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2024

Supporting information

THEORETICAL INSIGHTS INTO THE ADSORPTION AND GAS SENSING PERFORMANCE OF Fe/Cu-ADSORBED GRAPHENE

Nguyen Ngoc Tri^{1,*}, Dai Q. Ho^{1,2}, Nguyen Tien Trung^{1,*}

¹⁻Lab of Computational Chemistry and Modelling (LCCM), Faculty of Natural Sciences, Quy Nhon

University, Vietnam

²-Department of Materials Science and Engineering, University of Delaware, USA

*-Corresponding authors, Email: nguyenngoctri@qnu.edu.vn, nguyentientrung@qnu.edu.vn

Figures:

Figure S1. The density of states and charge density distribution maps of *Gr-Fe2(3)* and *Gr-Cu1(3)* surfaces

Gr-Fe2-Ac(1)

Gr-Fe2-Ac(2)

Gr-Fe2-Ac(3)

Gr-Fe3-F(1)

Gr-Fe3-F(2)

Gr-Fe3-Et(1)

Gr-Fe3-Et(2)

Gr-Fe3-Et(3)

Gr-Fe3-Ac(1)

Gr-Fe3-Ac(2)

Gr-Cu1-F(1)

Gr-Cu1-F(2)

Gr-Cu1-Et(1)

Gr-Cu1-Ac(1)

Gr-Cu1-Et(2)

Gr-Cu1-Ac(2)

Gr-Cu1-Ac(3)

Gr-Cu2-F(2)

Gr-Cu2-F(1)

Gr-Cu2-Et(2)

Gr-Cu2-Ac(1)

Gr-Cu2-Et(1)

Gr-Cu2-Ac(2)

Figure S2. The other stable complexes for **Gr-Mi--VOC** systems (M = Fe, Cu; i = 1,2,3; VOC = F (HCHO), Et (C_2H_5OH), Ac (CH₃COCH₃))

Figure S3. The topological geometries and total electron density transfer maps for the selected configurations in Gr-Fe2/Gr-Cu1--VOC systems

Figure S4. The density of states and charge density difference maps of the most stable configurations for Gr-Fe2, Gr-Cu1 surfaces

Figure S5. The band structures of the most stable configurations in Gr-Fe2/Gr-Cu1--VOC systems

Tables:

	HCHO (F-1/2/3)	C ₂ H ₅ OH (Et-1/2/3)	CH ₃ COCH ₃ (Ac-1/2/3)
Gr-Fe1	-1.59/-1.48/-1.23	-1.29/-1.23/-0.91	-1.48/-1.27/-1.43
Gr-Fe2	-2.33/-1.80/-1.70	-1.70/-1.52/-1.32	-2.17/-1.82/-1.84
Gr-Fe3	-1.16/-0.82/-0.65	-1.21/-1.16/-0.76	-1.12/-1.00/-0.68
Gr-Cu1	-0.70/-0.42/-0.44	-0.92/-0.69/-0.58	-0.82/-0.42/-0.53
Gr-Cu2	-0.61/-0.58	-0.71/-0.80	-0.77/-0.71
Gr-Cu3	-0.87/-0.87/-0.50	-0.72/-0.71/-0.49	-0.95/-0.79/-0.46

 Table S1. Adsorption energy of the other stable configurations for Fe/Cu-adsorbed graphene

 surfaces (Fig. S2) at the vdW-DF2 functional (in eV)

Table S2. Selected parameters of AIM and NBO analyses for the stable configurations ($\rho(r)$; $*^2(\rho(r), H(r)$ in au, EDT in e, WBI-Wiberg bond index)

	BCP	ρ(r)	• ² ($\rho(\mathbf{r})$)	H(r)	WBI	EDT
Gr-Fe2-F	C…Fe	0.100	0.251	-0.028	0.842	0.088
Gr-Fe2-Et	O…Fe	0.118	0.590	-0.042	0.842	
	O…Fe	0.064	0.446	-0.005	0.426	0.088
Gr-Fe2-Ac	O…Fe	0.116	0.565	-0.041	0.755	0.216
Gr-Cu1-F	Cu…O	0.081	0.830	-0.005	0.210	-0.162
or our r	H····C/π	0.008	0.035	0.002		
Gr-Cu1-Et	Cu…O	0.074	0.718	-0.003	0.200	0.067
	H····C/π	0.005	0.018	0.001		
Gr-Cu1-Ac	Cu…O	0.079	0.813	-0.004	0.202	0.056
	H····C/π	0.016	0.064	0.001		

Table S3. The characteristics of gas sensing performance of Gr-Fe2, Gr-Cu1 surfaces

	E _g (eV)	S (%)	τ (s)			
			298K	400K	500K	
Gr-Fe2-F	0.004	43.1	2.4×10^{27}	2.2×10^{17}	3.0x10 ¹¹	
Gr-Fe2-Et	0.000	47.4	5.5x10 ¹⁶	2.6x10 ⁹	1.3x10 ⁵	
Gr-Fe2-Ac	0.000	47.4	4.8x12 ¹⁴	2.1x10 ¹⁵	7.3x10 ⁹	
Gr-Cu1-F	0.010	33.6	9.4x10 ⁻³	2.7x10 ⁻⁵	8.8x10 ⁻⁷	
Gr-Cu1-Et	0.018	22.4	3.6x10 ³	0.4	1.9x10 ⁻³	
Gr-Cu1-Ac	0.041	21.5	72.8	2.1x10 ⁻²	1.8x10 ⁻⁴	