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Section S1. Supplementary information on multilevel descriptors 

Note S1. Multilevel descriptors for nonlinear optical crystals 

The multilevel descriptors were proposed by our group (J. Phys. Chem. C, 2021, 125, 25175), which 

includes the atomic properties, the characters of fundamental structural groups, and the crystal 

structures to describe inorganic NLO crystals. The first-level features consist of the basic properties of 

atoms in the chemical composition of NLO crystals, for example, the Pauling electronegativity, atomic 

mass and the difference of d and f electrons between the atom and the noble gas in the preceding 

element period. The second-level features can be obtained as follows. First, based on the chemical 

compositions of crystals and the chemical valences of atoms, two types of structural groups, namely, 

acid radicals (ARs) and metallic oxides (MOs), were identified. This is inspired by the well-known 

anionic group theoryS1 in the research field of NLO materials. Subsequently, the geometries of isolated 

ARs and MOs were optimized, followed by further electronic structure calculations to obtain total 

dipole moments, anisotropic quadrupole moments, anisotropic dipole polarizabilities and total first 

hyper-polarizabilities. These properties were employed to approximate the properties of anionic and 

cationic groups in crystals and collected as the second-level features. The third-level features are 

derived from the crystal structure of materials, including space group, cell parameters, band gap and 

multiplicity of Wyckoff positions. 

In our previous machine learning tasksS2 towards the prediction of two NLO properties (i.e., 

birefringence and second-order nonlinear coefficients), machine learning classifiers that only involve 

the first and second-level features exhibit good performances, while the third-level features with the 

crystal structural information cannot further enhance the accuracy. It provides an effective filter in the 

initial step of high-throughput NLO materials discovery. In this study, we also applied the crystal-

structure-free models with the same feature sets as that in our prior research to predict the bandgaps of 

NLO crystals. 
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Table S1. Definitions of the first-level descriptors.S2 

ID Description ID Description ID Description 

F1(a) minimal atomic mass F14 
weighted averaged Pauling 

electronegativity 
F27 

minimal atomic electron 

affinity 

F2(b) 
weighted averaged atomic 

mass 
F15 maximal Pauling electronegativity F28 

weighted averaged 

atomic electron affinity 

F3(c) maximal atomic mass F16 

weighted averaged difference of s electrons 

between each atom and the noble gas atom 

in the preceding element period 

F29 
maximal atomic electron 

affinity 

F4 
minimal element period 

number 
F17 

weighted averaged difference of p electrons 

between each atom and the noble gas atom 

in the preceding element period 

F30 
minimal melting point 

of elements 

F5 
weighted averaged 

element period number 
F18 

weighted averaged difference of d electrons 

between each atom and the noble gas atom 

in the preceding element period 

F31 

weighted averaged 

melting point of 

elements 

F6 
maximal element period 

number 
F19 

weighted averaged difference of f electrons 

between each atom and the noble gas atom 

in the preceding element period 

F32 
maximal melting point 

of elements 

F7 
minimal element group 

number 
F20 

weighted averaged difference of unfilled s 

orbitals between each atom and the noble 

gas atom in the preceding element period 

F33 
minimal boiling point of 

elements 

F8 
weighted averaged 

element group number 
F21 

weighted averaged difference of unfilled p 

orbitals between each atom and the noble 

gas atom in the preceding element period 

F34 

weighted averaged 

boiling point of 

elements 

F9 
maximal element group 

number 
F22 

weighted averaged difference of unfilled d 

orbitals between each atom and the noble 

gas atom in the preceding element period 

F35 
maximal boiling point of 

elements 

F10 
minimal atomic van der 

Waals radius 
F23 

weighted averaged difference of unfilled f 

orbitals between each atom and the noble 

gas atom in the preceding element period 

F36 
minimal density of 

elements 

F11 
weighted averaged atomic 

van der Waals radius 
F24 minimal atomic ionization energy F37 

weighted averaged 

density of elements 

F12 
maximal atomic van der 

Waals radius 
F25 

weighted averaged atomic ionization 

energy 
F38 

maximal density of 

elements 

F13 
minimal Pauling 

electronegativity 
F26 maximal atomic ionization energy 

(a) In F1, F4, F7, F10, F13, F24, F27, F30, F33 and F36, “minimal” denotes the minimal value among all elements 

containing in the compound. Take NaCaBe2B2O6F as an instance. The above features are calculated as 

min[AP(Na), AP(Ca), AP(Be), AP(B), AP(O), AP(F)] 

where AP(X) denotes the corresponding atomic property of atom X. 
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(b) In F2, F5, F8, F11, F14, F16, F17, F18, F19, F20, F21, F22, F23, F25, F28, F31, F34 and F37, “weighted averaged” 

denotes the average with the stoichiometric ratio of each element as its pre-determined weight. Take NaCaBe2B2O6F 

as an instance. The above features are calculated as 

AP(Na) + AP(Ca) + 2AP(Be) + 2AP(B) + 6AP(O) + AP(F)

1 + 1 + 2 + 2 + 6 + 1
 

(c) In F3, F6, F9, F12, F15, F26, F29, F32, F35 and F38, “maximal” denotes the maximal value among all elements 

containing in the compound. Take NaCaBe2B2O6F as an instance. The above features are calculated as 

max[AP(Na), AP(Ca), AP(Be), AP(B), AP(O), AP(F)] 
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Table S2. Definitions of the second-level descriptors.S2 

ID (a) Description ID (a) Description 

SN1(b) minimal HOMO-LUMO gap of ARs SP1(c) minimal HOMO-LUMO gap of MOs 

SN2(d) averaged HOMO-LUMO gap of ARs SP2(e) averaged HOMO-LUMO gap of MOs 

SN3(f) maximal HOMO-LUMO gap of ARs SP3(g) maximal HOMO-LUMO gap of MOs 

SN4(h) minimal total dipole moment of ARs SP4 minimal total dipole moment of MOs 

SN5 averaged total dipole moment of ARs SP5 averaged total dipole moment of MOs 

SN6 maximal total dipole moment of ARs SP6 maximal total dipole moment of MOs 

SN7(i) minimal aniso-quadrupole moment of ARs SP7 minimal aniso-quadrupole moment of MOs 

SN8 averaged aniso-quadrupole moment of ARs SP8 averaged aniso-quadrupole moment of MOs 

SN9 maximal aniso-quadrupole moment of ARs SP9 maximal aniso-quadrupole moment of MOs 

SN10(j) minimal aniso-polarizability of ARs SP10 minimal aniso-polarizability of MOs 

SN11 averaged aniso-polarizability ARs SP11 averaged aniso-polarizability MOs 

SN12 maximal aniso-polarizability of ARs SP12 maximal aniso-polarizability of MOs 

SN13(k) minimal total first hyper-polarizability of ARs SP13 minimal total first hyper-polarizability of MOs 

SN14 averaged total first hype-polarizability of ARs SP14 averaged total first hype-polarizability of MOs 

SN15 maximal total first hyper-polarizability of ARs SP15 maximal total first hyper-polarizability of MOs 

SN16(l) total charge of ARs SP16 total charge of MOs 

SN17 total multiplicity of ARs SP17 total multiplicity of MOs 

SN18(m) minimal flexibility index of ARs SP18 minimal flexibility index of MOs 

SN19 total flexibility index of ARs SP19 total flexibility index of MOs 

SN20 averaged flexibility index of ARs SP20 averaged flexibility index of MOs 

SN21 maximal flexibility index of ARs SP21 maximal flexibility index of MOs 

SN22 averaged charge of ARs   

(a) SP and SN denote the second-level features extracted from the properties of isolated metallic oxides (MOs) and 

acid radicals (ARs), respectively. 

(b) In SN1, SN4, SN7, SN10, SN13 and SN18, “minimal” denotes the minimal value among all ARs extracted from 

the compound. Take NaCaBe2B2O6F as an instance, SN1 is calculated as min[∆(BeO2
2−), ∆(BO3

3−), ∆(F−)], where 

∆(BeO2
2−), ∆(BO3

3−) and ∆(F−) denote the HOMO-LUMO gap of BeO2
2−, BO3

3− and F−, respectively. 

(c) In SP1, SP4, SP7, SP10, SP13 and SP18, “minimal” denotes the minimal value among all MOs extracted from the 

compound. Take NaCaBe2B2O6F as an instance, SP1 is calculated as min[∆(Na2O), ∆(CaO)], where ∆(Na2O) and 

∆(CaO) denote the HOMO-LUMO gap of Na2O and CaO, respectively. 

(d) In SN2, SN5, SN8, SN11, SN14, SN20 and SN22, “averaged” denotes the averaged value over all ARs extracted 

from the compound. Take NaCaBe2B2O6F as an instance, SN2 is [∆(BeO2
2−) + ∆(BO3

3−) + ∆(F−)]/3. 

(e) In SP2, SP5, SP8, SP11, SP14 and SP20, “averaged” denotes the averaged value over all MOs extracted from the 

compound. Take NaCaBe2B2O6F as an instance, SP2 is [∆(Na2O) + ∆(CaO)]/2. 
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(f) In SN3, SN6, SN9, SN12, SN15 and SN21, “maximal” denotes the minimal value among all ARs extracted from 

the compound. Take NaCaBe2B2O6F as an instance, SN3 is calculated as max[∆(BeO2
2−), ∆(BO3

3−), ∆(F−)]. 

(g) In SP3, SP6, SP9, SP12, SP15 and SP21, “maximal” denotes the minimal value among all ARs extracted from the 

compound. Take NaCaBe2B2O6F as an instance, SN3 is calculated as max[∆(Na2O), ∆(CaO)]. 

(h) In SN4, SN5, SN6, SP4, SP5 and SP6, the total dipole moment of an isolated AR or MO is 

𝜇 = √𝜇𝑥
2 + 𝜇𝑦

2 + 𝜇𝑧
2 

(i) In SN7, SN8, SN9, SP7, SP8 and SP9, the aniso-quadrupole moment of an isolated AR or MO is 

∆𝑄 = √
(𝑄𝑥𝑥 − 𝑄𝑦𝑦)2 + (𝑄𝑦𝑦 − 𝑄𝑧𝑧)2 + (𝑄𝑧𝑧 − 𝑄𝑥𝑥)2 + 6(𝑄𝑥𝑦

2 + 𝑄𝑦𝑧
2 + 𝑄𝑥𝑧

2 )

2
 

(j) In SN10, SN11, SN12, SP10, SP11 and SP12, the aniso-polarizability of an isolated AR or MO is 

∆𝛼 = √
(𝛼𝑥𝑥 − 𝛼𝑦𝑦)2 + (𝛼𝑦𝑦 − 𝛼𝑧𝑧)2 + (𝛼𝑧𝑧 − 𝛼𝑥𝑥)2 + 6(𝛼𝑥𝑦

2 + 𝛼𝑦𝑧
2 + 𝛼𝑥𝑧

2 )

2
 

(k) In SN13, SN14, SN15, SP13, SP14 and SP15, the total first hyper-polarizability of an isolated AR or MO is 

𝛽 = √𝛽𝑥
2 + 𝛽𝑦

2 + 𝛽𝑧
2 

where 

𝛽𝑥 = 𝛽𝑥𝑥𝑥 + (𝛽𝑥𝑦𝑦 + 𝛽𝑥𝑧𝑧 + 𝛽𝑦𝑥𝑦 + 𝛽𝑧𝑥𝑧 + 𝛽𝑦𝑦𝑥 + 𝛽𝑧𝑧𝑥)/3 

𝛽𝑦 = 𝛽𝑦𝑦𝑦 + (𝛽𝑦𝑥𝑥 + 𝛽𝑦𝑧𝑧 + 𝛽𝑥𝑦𝑥 + 𝛽𝑧𝑦𝑧 + 𝛽𝑥𝑥𝑦 + 𝛽𝑧𝑧𝑦)/3 

𝛽𝑧 = 𝛽𝑧𝑧𝑧 + (𝛽𝑧𝑦𝑦 + 𝛽𝑧𝑥𝑥 + 𝛽𝑦𝑧𝑦 + 𝛽𝑥𝑧𝑥 + 𝛽𝑦𝑦𝑧 + 𝛽𝑥𝑥𝑧)/3 

(l) In SN16, SN17, SN19, SP16, SP17 and SP19, “total” denotes the summation over all ARs or MOs extracted from 

the compound. Take NaCaBe2B2O6F as an instance, SN16 is 𝑞(BeO2
2−) + 𝑞(BO3

3−) + 𝑞(F−) = −6. 

(m) In SN18, SN19, SN20, SN21, SP18, SP19, SP20 and SP21, the flexibility index of an isolated AR or MO is 

defined as 

𝐹 =
1

𝑁
∑

𝑒(𝑅AB
0 −𝑅AB)/𝐿

(√𝐶A + √𝐶B)2/𝑅AB
2

×
1

|𝑋A − 𝑋B|
AB

 

where 𝑅AB  is the real distance between two connected atoms A and B in the isolated AR or MO, 𝑅AB
0   is the 

tabulated ideal bond length in the bond-valence theory, 𝐿 is a parameter that is typically set as 0.37 Å, 𝐶A and 𝐶B 

are the number of valence electrons of atom A and B, respectively, 𝑋A and 𝑋B are the electronegativity of atom A 

and B, respectively, 𝑁 is the number of bonds in the isolated AR or MO. Note that the flexibility index is set as 0 

for monatomic molecules (e.g., F−). 
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Section S2. Supplementary results of machine learning predictions 

Table S3. Performance of GBRT models that only involve the first-level descriptors. 

(a) Illustrated in Figure 2(a) in the main text. 

(b) Illustrated in Figure 2(b) in the main text. 

(c) Illustrated in Figure 3(b) in the main text. 

 

  

target fidelity features 
training set test set 

MAE (eV) RMSE (eV) MAE (eV) RMSE (eV) 

Eg-PBE single 
multilevel(a) 0.243 0.319 0.423 0.565 

first-level 0.238 0.317 0.443 0.568 

Eg-EXP single 
multilevel(b) 0.277 0.347 0.355 0.468 

first-level 0.284 0.353 0.374 0.512 

Eg-EXP multiple 
multilevel(c) 0.261 0.331 0.293 0.391 

first-level 0.282 0.348 0.341 0.440 
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Table S4. Performance of single-fidelity GBRTs with different random numbers for splitting. 

target split 
training set test set 

MAE (eV) RMSE (eV) MAE (eV) RMSE (eV) 

Eg-PBE 

  1(a) 0.243 0.319 0.423 0.565 

2 0.221 0.294 0.411 0.608 

3 0.229 0.302 0.407 0.544 

4 0.217 0.286 0.433 0.661 

5 0.210 0.274 0.488 0.685 

average 0.224 0.295 0.432 0.613 

Eg-EXP 

  1(b) 0.277 0.347 0.355 0.468 

2 0.283 0.351 0.359 0.461 

3 0.270 0.338 0.384 0.527 

4 0.273 0.344 0.385 0.513 

5 0.273 0.344 0.312 0.416 

average 0.275 0.345 0.359 0.477 

(a) Illustrated in Figure 2(a) in the main text. 

(b) Illustrated in Figure 2(b) in the main text. 
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Note S2. Details and results of single and multi-fidelity neural network models 

The multi-fidelity framework based on the backpropagationS3-S5 of neural networks (NNs) can be 

expressed as: 

𝜕𝐿1(𝑦1
𝑝𝑟𝑒𝑑({𝑥}; 𝜃1), 𝑦1

𝑡𝑟𝑢𝑒)

𝜕𝜃1
=

𝜕𝐿1

𝜕𝑦1
𝑝𝑟𝑒𝑑

𝜕𝑦1
𝑝𝑟𝑒𝑑

𝜕𝜃1
    (S1)  

where L1 is the loss function at low fidelity, {x} denote the input features of ML, and y1
true and y1

pred 

denote the reference and predicted values of low-fidelity labels, respectively. Eq. (S1) was used to 

determine θ1 and construct M1(θ1). Similarly, M2(θ2) was built according to 

𝜕𝐿2(𝑦2
𝑝𝑟𝑒𝑑({𝑥}, 𝑦1

𝑝𝑟𝑒𝑑({𝑥}; 𝜃1); 𝜃2), 𝑦2
𝑡𝑟𝑢𝑒)

𝜕𝜃2
=

𝜕𝐿2

𝜕𝑦2
𝑝𝑟𝑒𝑑

𝜕𝑦2
𝑝𝑟𝑒𝑑

𝜕𝜃2
   (S2)  

where L2 is the loss function at high fidelity, and y2
true and y2

pred denote the reference and predicted 

values of high-fidelity labels, respectively. Furthermore, the low-fidelity M1(θ1) was involved as: 

𝜕𝐿2(𝑦2
𝑝𝑟𝑒𝑑({𝑥}, 𝑦1

𝑝𝑟𝑒𝑑({𝑥}; 𝜃1); 𝜃2), 𝑦2
𝑡𝑟𝑢𝑒)

𝜕𝜃1
=

𝜕𝐿2

𝜕𝑦2
𝑝𝑟𝑒𝑑

𝜕𝑦2
𝑝𝑟𝑒𝑑

𝜕𝑦1
𝑝𝑟𝑒𝑑

𝜕𝑦1
𝑝𝑟𝑒𝑑

𝜕𝜃1
   (S3)  

In practice, we retrained M1(θ1) using Eq. (S3) after the construction of M2(θ2). It is worth noting 

that the concurrent training of two neural networks at different fidelities has been proposed by Meng 

and Karniadakis,S6 but its reliability on the small dataset of NLO crystals is still unclear. 

In this work, we built multi-fidelity neural networks with the same datasets. Feature selection 

procedure was performed at the beginning. First, the features with a variance lower than 0.03 after 

normalization were removed. Second, the principal component analysis was applied, resulting in 20 

input nodes for D1 and 10 for D2. The predicted Eg-PBE was concatenated as an additional input node 

for D2. Using the grid-search method, one hidden layer was adopted with 16 and 8 nodes for D1 and 

D2, respectively. The connection between neighboring layers was activated by the sigmoid function. 

The Adam optimizerS7 was applied to optimize parameters with the learning rate as 0.001. All NNs 

were implemented using PyTorch (version 2.0.1).S8  

The values of Eg-PBE were first obtained with one NN (referred to as M1), and the predicted Eg-

PBE as well as nine other features was applied to another NN (referred to as M2) to obtain Eg-EXP. 

When M1 and M2 were built with Eqs (S1) and (S2), the MAE and RMSE of Eg-EXP on the test set 

were 0.447 and 0.540 eV, respectively. After retraining M1(θ1) using Eq (S3), the MAE and RMSE 

decreased to 0.400 and 0.487 eV, respectively. It suggests that the backpropagation from L2 at high 

fidelity to θ1 at low fidelity is beneficial to multi-fidelity ML. However, the accuracy of NNs was 

below the baseline, which can be attributed to the small size of NLO dataset.  
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