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Figure S1: (a) The overlap of the crystal structures at nine different temperatures between 30 K to
375 K. (b) The RMSD of the crystal structures aligned with respect to the 30 K structure. (c) RMSD
of the partially optimized structure in LS with respect to the corresponding X-ray crystal structure.
(d) RMSD of the partially optimized structure in HS with respect to the corresponding X-ray crystal
structure. (e) RMSD of the partially optimized structure with respect to the completely optimised
structure in LS. (f) RMSD of the partially optimized structure with respect to the completely optimised
structure in HS.
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Figure S2: Potential energy of the complex (a) at crystal structures and (b) at partially optimised
structures. (c) ∆EHS−LS from crystal structures and from partially optimised structures at different
temperatures using B3LYP* functional.

Figure S3: The continuous shape measure (CShM) map of the crystal structures at different tempera-
tures with reference to different possible geometries in hexa-coordination: hexagon (HP), pentagonal
pyramid (PPY), trigonal prism (TPR) and Johnson pentagonal pyramid (JPPY). The same with re-
spect to the ideal octahedron is given in Figure 2(d) of the manuscript.
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T (K) ET EJ ENuc EV EX EC

crystal structure geometries in LS
30 2862.13 6058.14 4825.02 -16340.03 -260.58 -12.28

100 2861.99 6056.01 4822.88 -16335.66 -260.54 -12.27
150 2863.06 6047.41 4814.45 -16319.32 -260.78 -12.28
200 2863.21 6031.14 4798.08 -16286.79 -260.82 -12.28
250 2863.29 6013.36 4780.22 -16251.21 -260.84 -12.28
300 2863.08 5998.09 4764.84 -16220.40 -260.79 -12.28
325 2863.68 5997.61 4764.37 -16219.90 -260.93 -12.29
350 2863.47 5993.88 4760.61 -16212.26 -260.88 -12.28
375 2863.68 5997.61 4764.37 -16219.90 -260.93 -12.29

crystal structure geometries in HS
30 2862.68 6057.98 4825.02 -16340.28 -260.71 -12.27

100 2862.55 6055.85 4822.88 -16335.92 -260.67 -12.27
150 2863.59 6047.22 4814.45 -16319.54 -260.91 -12.27
200 2863.72 6030.92 4798.08 -16286.95 -260.95 -12.27
250 2863.78 6013.11 4780.22 -16251.34 -260.97 -12.27
300 2863.56 5997.83 4764.84 -16220.51 -260.92 -12.27
325 2864.14 5997.32 4764.37 -16219.97 -261.05 -12.28
350 2863.94 5993.59 4760.61 -16212.33 -261.01 -12.27
375 2864.14 5997.32 4764.37 -16219.97 -261.05 -12.28

partially optimised geometries in LS
30 2857.27 6045.28 4811.27 -16310.07 -259.43 -12.23

100 2857.30 6047.17 4813.18 -16313.90 -259.44 -12.23
150 2857.19 6029.82 4795.71 -16278.99 -259.42 -12.23
200 2857.09 6008.49 4774.26 -16236.14 -259.40 -12.22
250 2857.04 5989.53 4755.19 -16198.07 -259.39 -12.22
300 2857.04 5979.86 4745.48 -16178.68 -259.39 -12.22
325 2856.99 5973.87 4739.46 -16166.62 -259.38 -12.22
350 2856.96 5967.24 4732.79 -16153.30 -259.38 -12.22
375 2856.97 5967.57 4733.12 -16153.97 -259.38 -12.22

partially optimised geometries in HS
30 2857.77 6044.14 4810.33 -16308.37 -259.55 -12.22

100 2857.81 6046.11 4812.32 -16312.36 -259.56 -12.22
150 2857.68 6028.80 4794.91 -16277.55 -259.54 -12.22
200 2857.56 6007.58 4773.59 -16234.92 -259.52 -12.22
250 2857.48 5988.68 4754.63 -16196.98 -259.51 -12.21
300 2857.48 5979.03 4744.96 -16177.67 -259.51 -12.21
325 2857.41 5973.09 4738.99 -16165.70 -259.49 -12.21
350 2857.38 5966.44 4732.31 -16152.34 -259.49 -12.21
375 2857.39 5966.79 4732.66 -16153.06 -259.49 -12.21

Table S1: Energy decomposition (in a.u.) of crystal structures (LS and HS) and partially optimised
structures (LS and HS) at different temperatures using B3LYP* functional in terms of kinetic energy
(ET), Coulomb term (EJ), nuclear-nuclear repulsion term (ENuc), electron-nuclear attraction (EV),
exchange term (EX) and correlation term (EC).
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1 Calculation of the Gibbs Free Energies
The Gibbs free energy at a given temperature is expressed in terms of enthalpy (H) and entropy S as,

G = H − TStot. (S1)

The enthalpy is given by the sum of the (internal energy Etot) and RT , with R as the universal gas
constant. The total energy, Etot is obtained as,

Etot = Eopt + EZPE + Ethermal(T ) (S2)

where Eopt is the optimized energy at the global minimum, EZPE is the zero-point energy, and
Ethermal(T ) is the thermal contribution to the total energy, obtained as1,

Ethermal(T ) = Etrans + Erotation + Evibration + Eelectronic
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where the translational, rotational, and electronic partition functions are given by, respectively,

qtrans =

(
2πmkBT

h2

)1/2
kBT

P
(S5)

qrotation =
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)
(S6)

qel = ω0e
−ϵ0/kBT + ω1e

−ϵ1/kBT + ω2e
−ϵ2/kBT + · · · . (S7)

Here, m is the mass of the molecule, kB is the Boltzmann constant, T is temperature, h is the Planck’s
constant, P is the pressure (1 atm considered), σ is the symmetry number (1 for the present complex),
Θx, Θy and Θz are the rotational temperatures along the three principal axes of rotation, and ωi is the
electronic degeneracy of the ith electronic state of energy ϵi.

For a well-separated non-degenerate electronic ground state, the qel reduces to the spin-degeneracy
of the state. In the present case, since the ground quartet and ground doublet states show three- and
two-fold quasi-degeneracy (4T1g and 2Eg in Oh geometry, respectively), we have included the contri-
bution of the first three quartet and the first two doublet states in the evaluation of electronic partition
function and electronic entropy. The vibrational temperatures are obtained from the normal harmonic
vibrational frequencies at the globally optimised structures in LS and HS states for calculating vibra-
tional entropy. To distinguish the low-frequency modes from internal-rotation modes, we used the
so-called ’hindered-rotor’ method during the harmonic vibrational analysis and calculation of differ-
ent thermodynamic functions. For entropy calculation with different functionals, the rotational and
vibrational temperatures were taken from the corresponding optimized geometries obtained with the
concerned functionals. Figure S4 provides a comparison of the translational, rotational, vibrational,
and electronic entropies of the LS and HS states at different temperatures. Among these, the vibra-
tional entropy is found to provide the most dominant contribution.
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Figure S4: The (a) translational, (b) rotational, (c) vibrational, and (d) electronic entropies for HS and
LS states at different temperatures obtained using B3LYP* functional.
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Table S2: NEVPT2 energies (cm−1) of the 2Eg and the 4T2g states obtained from CAS(7, 5), CAS(7,
10), and CAS(11, 7) active spaces.

CAS(7,5) CAS(7,10) CAS(11,7)
T (K) 2Eg

4T2g
2Eg

4T2g
2Eg

4T2g

30 K 0 0 0 0 0 0
5586.2 963.8 5381.4 753.9 4949.6 440.0

1046.9 791.6 660.1
100 K 0 0 0 0 0 0

5522.0 743.8 4947.1 743.8 4840.0 263.9
826.9 826.7 330.0

150 K 0 0 0 0 0 0
4745.2 656.1 4781.3 656.3 4818.0 264.0

729.5 729.5 330.1
200 K 0 0 0 0 0 0

4088.5 566.7 4120.4 566.7 4813.6 219.9
695.6 695.6 330.0

250 K 0 0 0 0 0 0
3396.1 461.9 3422.7 462.0 4840.0 220.0

626.1 626.2 286.1
300 K 0 0 0 0 0 0

3798.1 419.5 3823.8 419.3 3943.5 220.2
573.3 573.3 383.9

325 K 0 0 0 0 0 0
3114.5 396.0 3138.7 396.2 3681.3 198.1

551.9 552.4 264.0
350 K 0 0 0 0 0 0

3200.34 362.8 3223.0 362.8 3505.9 176.0
520.1 520.1 247.3

375 K 0 0 0 0 0 0
3167.8 342.1 3168.0 342.1 3295.6 176.2

518.9 518.9 242.0
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Figure S5: Gibbs free energy of the LS and HS ground states from CASSCF calculations (a,c,e)
with active-space of (7,5), (7,10), and (11,7), respectively. The corresponding energy from NEVPT2
(b,d,f). All energies are shown relative to the LS ground state energy at 30 K structure. The HS
states are shown by dashed lines, while the LS states by solid lines. The entropy contributions to the
electronic energies are calculated (as mentioned in the previous section) using the required physical
quantities from B3LYP* functional. After including entropy corrections, the spin transition tempera-
ture estimated by NEVPTE method reduces to 175 K for CAS(7,5), 150 K for CAS(7,10), and around
225 K for CAS(11,7). CAS(11,7) provides the best agreement with the experimentally observed spin
transition temperature2

.
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Figure S6: Normal modes of vibration along (a) mode 17 (205.11 cm −1) and (b) mode 21 (233.56
cm −1).
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Figure S7: Variation of (a) gz and (b) D for the selected vibrational modes along the dimensionless
normal modes of vibrations.
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Table S3: Matrix elements of the Lx, Ly, and Lz operators with the d-orbitals basis3.
Lx |dz2 > |dx2−y2 > |dxy > |dyz > |dzx >

|dz2 > 0 0 0 i
√
3 0

|dx2−y2 > 0 0 0 i 0
|dxy > 0 0 0 0 −i

|dyz > −i
√
3 −i 0 0 0

|dzx > 0 0 i 0 0
Ly |dz2 > |dx2−y2 > |dxy > |dyz > |dzx >

|dz2 > 0 0 0 0 −i
√
3

|dx2−y2 > 0 0 0 0 i
|dxy > 0 0 0 i 0
|dyz > 0 0 −i 0 0
|dzx > i

√
3 −i 0 0 0

Lz |dz2 > |dx2−y2 > |dxy > |dyz > |dzx >
|dz2 > 0 0 0 0 0

|dx2−y2 > 0 0 −2i 0 0
|dxy > 0 2i 0 0 0
|dyz > 0 0 0 0 i
|dzx > 0 0 0 −i 0
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