Supporting Information

Theoretical Study of Transition Metal–Doped β₁₂ Borophene as New Single Atom Catalysts for Carbon Dioxide Electroreduction

Hongjie Huang^{a,b#}, Mingyao Chen^{b#}, Rongxin Zhang^{b#}, Yuxuan Ding^b, Hong Huang^b, Zhangfeng Shen^b, Lingchang Jiang^b, Zhigang Ge^b, Hongtao Jiang^a, Minhong Xu^{*c}, Yangang Wang^{*b} and Yongyong Cao^{*b}

^a Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, P. R. China

^b College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, P. R. China

^c Department of Materials Engineering, Huzhou University, Huzhou 313000, Zhejiang, P. R. China

* Corresponding author:

E-mail address: E-mail address: <u>xumh123@163.com</u> (M. Xu) <u>ygwang8136@mail.zjxu.edu.cn</u> (Y. Wang) <u>cyy@zjxu.edu.cn</u> (Y. Cao)

These authors contributed equally to this work

Figure S1. The model of the catalyst in the environment of 21 water molecules.

Figure S2. The electronic local function (ELF) diagrams of β_{12} borophene.

Figure S3. Optimized models of a single transition metal atom supported on β_{12} -borophene (TM@ β_{12} -BM).

Figure S4. Binding energies of 19 catalysts (TM $@\beta_{12}$ -BM).

Figure S5. The charge density difference for 19 stable catalysts. The charge accumulation and depletion were depicted by yellow and green, respectively. The transferred charge from TM to β_{12} -BM is labelled as well.

Figure S6. The transferred charge from TM to β_{12} -BM.

Figure S7. The optimized configuration of CO₂ adsorption on 19 catalysts (Model 1).

Figure S8. The optimized configuration of CO₂ adsorption on 19 catalysts (Model 2).

Figure S9. The optimized configuration of CO₂ adsorption on 19 catalysts (Model 3).

Figure S10. The optimized configuration of CO₂ adsorption on 19 catalysts (Model 4).

Figure S11. The most stable adsorption configuration of the selected CO_2 on each catalyst.

Figure S12. (a)–(d) the projected density of state (PDOS) of single CO₂ and two CO₂ molecules adsorption on the Sc@ β_{12} -BM and Y@ β_{12} -BM in the gas phase, respectively.

Figure S13. the projected density of state (PDOS) of Sc@ β_{12} -BM and Y@ β_{12} -BM, respectively.

Figure S14. (a)–(d) projected crystal orbital Hamilton population (pCOHP) of single CO₂ and two CO₂ molecules adsorption on the Sc@ β_{12} -BM and Y@ β_{12} -BM in the gas phase, respectively.

Figure S15. Gibbs free energy barrier diagram for the generation of *COCO on the (a) $Sc@\beta_{12}$ -BM and (b) Y@ β_{12} -BM, respectively.

Figure S16. Free energy diagrams of CO₂RR through the most favorable C₁ and C₂ pathway on Sc@ β_{12} -BM and Y@ β_{12} -BM, respectively.

Figure S17. The CO₂ adsorption site on (a) original β_{12} -borophene and (b) TM@ β_{12} -BM.

Figure S18. (a) Free energy diagram of the CO₂RR pathways to C₁ products on original β_{12} borophene.

Figure S19. Free energy diagram of the CO₂RR pathways to C₁ products on pure B site of (a)Sc@ β_{12} -BM and (b) Y@ β_{12} -BM.

Figure S20. Structures of the initial, transition and final states of (a) and (c) CO₂ adsorption process on Sc@ β_{12} -BM and Y@ β_{12} -BM. (b) and (d) Free energy distribution of CO₂ adsorption process on Sc@ β_{12} -BM and Y@ β_{12} -BM in the liquid phase, respectively.

Figure S21. (a)–(b) Charge variation of the three moieties along two steps of C-C coupling reactions. Moieties 1, 2, and 3 represent the adsorbed CO₂, the Sc@ β_{12} -BM and Y@ β_{12} -BM, and the water molecules, respectively. The positive values represent the electron obtained; negative values represent the loss of electrons.

Figure S22. Initial adsorption configuration of H_2O on the Sc@ β_{12} -BM and Y@ β_{12} -BM.

Figure S23. The optimized adsorption structure of H_2O on the (a) Sc@ β_{12} -BM and (b) Y@ β_{12} -BM.

Figure S24. Optimized *H stable structure at six sites of Sc@ β_{12} -BM.

Figure S25. Optimized *H stable structure at six sites of Y@ β_{12} -BM.

CO ₂ angle(°)	Model 1	Model 2	Model 3	Model 4
$Sc@\beta_{12}$ -BM	_	125.53	125.74	122.79
Ti@β ₁₂ -BM	_	127.20	127.71	123.84
V@β ₁₂ -BM	126.88	126.86	129.25	121.71
Cr@β ₁₂ -BM	138.50	138.78	130.94	_
$Mn@\beta_{12}$ -BM	_	_	132.28	_
Fe@β ₁₂ -BM	_	_	129.56	_
$Co@\beta_{12}$ -BM	_	_	126.88	_
Ni@β ₁₂ -BM	_	_	127.15	149.55
$Cu@\beta_{12}$ -BM	_	_	127.29	_
$Zn@\beta_{12}$ -BM	_	_	124.58	_
$Y@\beta_{12}$ -BM	139.89	124.12	124.26	123.93
Zr@β ₁₂ -BM	126.68	126.14	126.35	120.17
$Nb@\beta_{12}$ -BM	126.92	126.88	128.16	122.69
$Mo@\beta_{12}$ -BM	133.25	133.57	128.64	117.47
$Ru@\beta_{12}$ -BM	140.56	140.24	131.48	140.57
Rh@β ₁₂ -BM	_	148.20	125.42	153.76
$Pd@\beta_{12}$ -BM	_	_	125.05	_
$Ag@\beta_{12}$ -BM	_	_	123.72	_
$Cd@\beta_{12}$ -BM	_	_	122.65	_

Table S1. Bond angle variation of CO₂ adsorbed by four different models of 3*d* and 4*d* transition metal doped β_{12} -BM ("–" represents the inability to absorb CO₂).

E _{ads} (eV)	Model 1	Model 2	Model 3	Model 4
$Sc@\beta_{12}$ -BM	_	-1.41	-1.78	-0.51
$Ti@\beta_{12}$ -BM	_	-1.40	-1.56	-0.35
V@β ₁₂ -BM	-1.41	-1.41	-1.25	-0.16
$Cr@\beta_{12}$ -BM	-0.98	-0.98	-0.65	_
$Mn@\beta_{12}$ -BM	_	_	-0.40	_
Fe@β ₁₂ -BM	_	_	-0.17	_
$Co@\beta_{12}$ -BM	_	_	-0.12	_
Ni@ β_{12} -BM	_	_	-0.51	-0.29
$Cu@\beta_{12}$ -BM	_	_	-0.29	_
$Zn@\beta_{12}$ -BM	_	_	-0.73	_
Y@β ₁₂ -BM	-0.64	-1.36	-1.76	-0.61
$Zr@\beta_{12}$ -BM	-1.37	-1.33	-1.53	-0.54
$Nb@\beta_{12}$ -BM	-1.40	-1.40	-1.22	-0.47
$Mo@\beta_{12}$ -BM	-1.03	-1.41	-0.82	-0.38
$Ru@\beta_{12}$ -BM	-0.76	-1.14	-1.07	-1.14
$Rh@\beta_{12}$ -BM	_	-0.63	-1.04	-0.67
$Pd@\beta_{12}$ -BM	_	_	-0.13	_
$Ag@\beta_{12}$ -BM	_	_	-0.61	_
$Cd@\beta_{12}$ -BM	_	_	-0.73	_

Table S2. Adsorption energy of CO₂ by 3*d* and 4*d* transition metal doped β_{12} -BM ("–" represents the inability to absorb CO₂).

Table S3. The adsorption energy of the adsorbed single CO_2 and two CO_2 molecules (E_{ads}), the angle of adsorbed CO_2 (degree), the bond length of adsorbed CO_2 (Å), number of electrons transferred from the catalyst to the CO_2 molecule (Δq) and crystal integral Hamiltonian population (ICOHP) in the gas phase for Sc@ β_{12} -BM and Y@ β_{12} -BM.

		Sc@	β ₁₂ -BM				Ţ	Y@β ₁₂ -Β	Μ	
	$E_{\rm ads}$	Angle	Bond	Δq	ICOHP	$E_{\rm ads}$	Angle	Bond	Δq	ICOHP
	(eV)	of CO ₂	length	(e)	(eV)	(eV)	of CO ₂	length	(e)	(eV)
		(degree)	of C–O				(degree)	of C–O		
			(Å)					(Å)		
*CO ₂	-1.78	8 125.73	1.30	1.88	-4.24	1.76	124.26	1.28	1.39	-3.88
			1.27					1.30		
*2CO ₂	-3.16	6 125.00	1.27/1.30	1.27	-4.26	-3.13	123.44	1.28/1.30	1.38	-3.59
		124.98	1.30/1.27	1.31	-4.25		123.48	1.30/1.28	1.38	-3.59

Model (β ₁₂ -BM)	$\Delta G(*CO_2)$	Bond Angle of CO ₂
	(eV)	(°)
1	0.17	127.22
2	_	180.00
3	_	180.00
4	0.24	122.28
5	_	180.00

Table S4. Adsorption free energies and bond angles of optimized CO_2 on pure β_{12} -borophene.

	$Sc@\beta_1$	2-BM	Y@β ₁₂ -BM		
Model	$\Delta G(*CO_2)$	$\Delta G(*CO_2) \qquad \text{Bond Angle}$		Bond	
	(eV)	of CO ₂	(eV)	Angle of	
		(°)		CO ₂	
				(°)	
а	-0.66	124.94	-1.06	124.10	
b	_	180	_	180	
с	-0.39	117.72	-0.55	117.16	
d	-0.87	121.62	-0.89	120.63	

Table S5. Adsorption free energies and bond angles of optimized CO_2 on pure B sites of $TM@\beta_{12}$ -BM(TM = Sc, Y).

Sc@β ₁₂ -BM		Υ@β ₁₂ -BM		
Model	$\Delta G(*H_2O)$	Model	$\Delta G(^{*}\mathrm{H}_{2}\mathrm{O})$	
	(eV)		(eV)	
1	-0.55	1	-0.38	
2	-0.52	2	-0.61	
3	-0.59	3	-0.67	

Table S6. Free energies of water adsorption at different sites on Sc@ β_{12} -BM and Y@ β_{12} -BM.