Supporting Information

Strong mechanical anisotropy and an anisotropic Dirac state in two-dimensional C_5N_3

Rui Tan,^a Xueqing Chen,^a Liyufen Dai,^b Yulou Ouyang,^a Liemao Cao,^a Zhenkun Tang,^a Ming Ma,^b Xiaolin Wei,^{*a} and Gaokuo Zhong^{*b}

- ^a The Key Laboratory of Micro-nano Energy Materials and Application Technologies, University of Hunan Province & College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421002, China.
- ^bShenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China

*Corresponding Authors: xlw@xtu.edu.cn; gk.zhong@siat.ac.cn

Fig. S1: Temperature and total energy fluctuations of the TPH- C_5N_3 monolayer throughout the AIMD simulation at temperatures of (a) 500 K, (b) 800 K, (c) 1000 K, and (d) 2300 K. Insets display the atomic configurations of TPH- C_5N_3 at these respective temperatures (500, 800, 1500, and 2300 K).

Fig. S2: Band structures of TPH- C_5N_3 monolayer calculated using the PBE (green lines) and HSE06 (yellow lines) functionals.

Fig. S3: The effect of uniaxial strain along the *a* axis on the Dirac state of TPH-C₅N₃ in the PBE functional.

Fig. S4: The effect of biaxial strain on the Dirac state of $TPH-C_5N_3$ in the PBE functional.