# **Supporting Information**

## Promotive Mechanism of CO<sub>2</sub> on the Hydrogenation of Levulinic Acid into γ-Valerolactone Catalyzed by RuCl<sub>3</sub> in Aqueous Solution

Han-Yun Min<sup>a</sup>, Jin-Shan Xiong<sup>a</sup>, Ting-Hao Liu<sup>a</sup>, Shuai Fu<sup>a</sup>, Chang-Wei Hu<sup>b</sup>, Hua-Qing Yang<sup>a</sup>\*

<sup>a</sup>College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China <sup>b</sup>Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China

\*Correspondence to:

H.-Q. Yang; e-mail: <a href="https://www.huagingwang@scu.edu.cn">https://www.huagingwang@scu.edu.cn</a>;

Fax: 86 28 85464466; Telephone: 86 28 85464466

### Catalogue

- (10). Figure S10. Arrhenius plots of rate constants for the selective control step for the reaction stage of  ${}^{6}[Ru(PPh_{3})]^{3+}$  + HCOOH + NEt<sub>3</sub>  $\rightarrow {}^{6}[RuH]^{2+}$  + [HNEt<sub>3</sub>]<sup>+</sup> + PPh<sub>3</sub> + CO<sub>2</sub> in aqueous solution. 11

| (12). | <b>Table S1.</b> The reaction rate comparation of ${}^{6}[Ru(PPh_{3})]^{3+}$ + HCOOH + NEt <sub>3</sub> $\rightarrow {}^{6}[RuH]^{2+}$ + $[HNEt_{3}]^{+}$ + PPh <sub>3</sub> + CO <sub>2</sub> and ${}^{6}[Ru(PPh_{3})]^{3+}$ + H <sub>2</sub> + NEt <sub>3</sub> $\rightarrow {}^{6}[RuH]^{2+}$ + $[HNEt_{3}]^{+}$ + PPh <sub>3</sub> under the temperature range of 403 – 443 K.                                                                                                                                                                                                                                                                                             |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (13). | <b>Figure S12.</b> Arrhenius plots of rate constants for the selective control step for the reaction stage of ${}^{6}$ [6-F-O-IM5] <sup>2+</sup> + [HNEt <sub>3</sub> ] <sup>+</sup> + PPh <sub>3</sub> $\rightarrow$ OT + ${}^{6}$ [Ru(PPh <sub>3</sub> )] <sup>3+</sup> + H <sub>2</sub> O + NEt <sub>3</sub> in aqueous solution. 14                                                                                                                                                                                                                                                                                                                                        |
| (14). | <b>Figure S13.</b> Arrhenius plots of rate constants for the selective control step for the reaction stage of ${}^{6}$ [6-F-O-IM5] <sup>2+</sup> + [HNEt <sub>3</sub> ] <sup>+</sup> + PPh <sub>3</sub> $\rightarrow$ MFD + ${}^{6}$ [Ru(PPh <sub>3</sub> )] <sup>3+</sup> + NEt <sub>3</sub> in aqueous solution                                                                                                                                                                                                                                                                                                                                                              |
| (15). | <b>Table S2.</b> The reaction rate comparation of ${}^{6}$ [6-F-O-IM5] <sup>2+</sup> + [HNEt <sub>3</sub> ] <sup>+</sup> + PPh <sub>3</sub> $\rightarrow$ OT + ${}^{6}$ [Ru(PPh <sub>3</sub> )] <sup>3+</sup> + H <sub>2</sub> O + NEt <sub>3</sub> and ${}^{6}$ [6-F-O-IM5] <sup>2+</sup> + [HNEt <sub>3</sub> ] <sup>+</sup> + PPh <sub>3</sub> $\rightarrow$ MFD + ${}^{6}$ [Ru(PPh <sub>3</sub> )] <sup>3+</sup> + NEt <sub>3</sub> under the temperature range of 403 – 443 K                                                                                                                                                                                             |
| (16). | <b>Figure S14.</b> Arrhenius plots of rate constants for the selective control step of ${}^{6}$ [RuH] <sup>2+</sup> + LA $\rightarrow {}^{6}$ [3-F-K-TS2] <sup>2+</sup> in aqueous solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (17). | <b>Figure S15.</b> Arrhenius plots of rate constants for the selective control step for the reaction stage of ${}^{6}[RuH]^{2+} + LA \rightarrow {}^{6}[6-F-O-TS2]^{2+}$ in aqueous solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (18). | <b>Table S3.</b> The reaction rate comparation of ${}^{6}[RuH]^{2+} + LA \rightarrow {}^{6}[3-F-K-TS2]^{2+} and {}^{6}[RuH]^{2+} + LA$ $\rightarrow {}^{6}[6-F-O-TS2]^{2+}$ under the temperature range of 403 – 443 K.19                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (19). | <b>Table S4.</b> Zero-point energies ( <i>ZPE</i> , hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by <i>ZPE</i> , sum of electronic and thermal free energies ( $G_c$ , hartree) with <i>ZPE</i> and thermal corrections, and relative energies ( $E_r$ , kJ mol <sup>-1</sup> ) and relative Gibbs free energies ( $G_r$ , kJ mol <sup>-1</sup> ) relative to ${}^{6}Ru^{3+}$ and H <sub>2</sub> O for ${}^{\times}[Ru(H_2O)_n]^{3+}$ (n = 0-6) at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution20                                                                                                |
| (20). | <b>Table S5.</b> Zero-point energies ( <i>ZPE</i> , hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by <i>ZPE</i> , sum of electronic and thermal free energies ( $G_c$ , hartree) with <i>ZPE</i> and thermal corrections, and relative energies ( $E_r$ , kJ mol <sup>-1</sup> ) and relative Gibbs free energies ( $G_r$ , kJ mol <sup>-1</sup> ) relative to ${}^{6}Ru^{3+}$ , PPh <sub>3</sub> , NEt <sub>3</sub> and PY for ${}^{6}[Ru(H_2O)]^{3+}$ , ${}^{6}[Ru(PPh_3)]^{3+}$ , ${}^{6}[Ru(NEt_3)]^{3+}$ and ${}^{6}[Ru(PY)]^{3+}$ complexes at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution |
| (21). | <b>Table S6.</b> Zero-point energies ( <i>ZPE</i> , hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by <i>ZPE</i> , sum of electronic and thermal free energies ( $G_c$ , hartree) with <i>ZPE</i> and thermal corrections, and relative energies ( $E_r$ , kJ mol <sup>-1</sup> ) and relative Gibbs free energies ( $G_r$ , kJ mol <sup>-1</sup> ) relative to the reactants for hydrogenation of LA to GVL, OT and MFD with H <sub>2</sub> as H-source at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution                                                                                           |
| (22). | <b>Table S7.</b> Zero-point energies ( <i>ZPE</i> , hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by <i>ZPE</i> , sum of electronic and thermal free energies ( $G_c$ , hartree) with <i>ZPE</i> and thermal corrections, and relative energies ( $E_r$ , kJ mol <sup>-1</sup> ) and relative Gibbs free energies ( $G_r$ , kJ mol <sup>-1</sup> ) relative to the reactants for hydrogenation of LA to GVL, OT and MFD with HCOOH as H-source at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.                                                                                                   |

- (23). **Table S8.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction of LA + HCOOH  $\rightarrow$  GVL + H<sub>2</sub>O + CO<sub>2</sub> through hydrogenation of ketone carbonyl in the presence of NEt<sub>3</sub> ligand at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution......24
- (24). **Table S9.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reactions of LA + HCOOH  $\rightarrow$  MFD + H<sub>2</sub>O + CO<sub>2</sub> and LA + HCOOH  $\rightarrow$  OT + CO<sub>2</sub> through carboxyl carbonyl hydrogenation in the presence of NEt<sub>3</sub> ligand at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

- (32). **Table S18.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction stage (vii) of  ${}^{6}[RuH]^{2+}$  + LA + [HNEt<sub>3</sub>]<sup>+</sup> + PPh<sub>3</sub>  $\rightarrow {}^{6}[Ru(PPh_3)]^{3+}$  + NEt<sub>3</sub> + MFD through the hydrogenation of carboxyl carbonyl at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.



**Figure S1** The geometric structures (a), the relative energy  $(E_r, \text{ kJ mol}^{-1})$  (b) and the formed Gibbs free energies  $(G_r, \text{ kJ mol}^{-1})$  (c) for  $[\text{Ru}(\text{H}_2\text{O})_n]^{3+}$  (n=0-6) complexes as function of the number of coordinating H<sub>2</sub>O molecules (n) relative to the dissociated  ${}^{6}\text{Ru}^{3+}$  cation and H<sub>2</sub>O in aqueous solution



**Figure S2** The optimized geometric structures, the Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the dissociated  ${}^{6}Ru^{3+}$  cation and ligand, and the charge of natural bond orbital (NBO) of Ru-site in  ${}^{6}[Ru(H_2O)]^{3+}$ ,  ${}^{6}[Ru(PPh_3)]^{3+}$ ,  ${}^{6}[Ru(NEt_3)]^{3+}$  and  ${}^{6}[Ru(PY)]^{3+}$  complexes in aqueous solution.



**Figure S3** The geometric structures (a) and the schematic energy diagrams (b) with the relative Gibbs free energy  $(G_r, kJ \text{ mol}^{-1})$  for the background reaction of the hydrogenation of LA to GVL, OT and MFD with H<sub>2</sub> as H-source. For clarity, hydrogen atoms on carbon are not shown. Bond lengths are reported in Å.



(b)

**Figure S4** The geometric structures (a) and the schematic energy diagrams (b) with the relative Gibbs free energy  $(G_r, kJ \text{ mol}^{-1})$  for the background reaction of the hydrogenation of LA to GVL, OT and MFD with HCOOH as H-source. For clarity, hydrogen atoms on carbon are not shown. Bond lengths are reported in Å.



**Figure S5** The geometric structures (a) and the schematic energy diagrams (b) with the relative Gibbs free energy  $(G_r, kJ \text{ mol}^{-1})$  for the background of LA + HCOOH  $\rightarrow$  GVL + H<sub>2</sub>O + CO<sub>2</sub> through hydrogenation of ketone carbonyl in the presence of NEt<sub>3</sub> ligand. For clarity, hydrogen atoms on carbon are not shown. Bond lengths are reported in Å.



**Figure S6** The geometric structures (a) and the schematic energy diagrams (b) with the relative Gibbs free energy  $(G_r, \text{ kJ mol}^{-1})$  for the background reactions of LA + HCOOH  $\rightarrow$  OT + H<sub>2</sub>O + CO<sub>2</sub> and LA + HCOOH  $\rightarrow$  MFD + CO<sub>2</sub> through hydrogenation of carboxyl carbonyl in the presence of NEt<sub>3</sub> ligand. For clarity, hydrogen atoms on carbon are not shown. Bond lengths are reported in Å.



(b)

**Figure S7** The geometric structures (a) and the schematic energy diagrams (b) with the relative Gibbs free energy  $(G_r, \text{ kJ mol}^{-1})$  for the reaction stage of  ${}^{6}[\text{Ru}(\text{PPh}_3)]^{3+} + \text{HCOO}^{-} + \text{LA} \rightarrow {}^{6}[3\text{-F-K-IM5}]^{2+} + \text{CO}_2 + \text{PPh}_3$  through hydrogenation of ketone carbonyl. For clarity, hydrogen atoms on carbon are not shown. Bond lengths reported in Å.



(b)

**Figure S8.** The geometric structures (a) and the schematic energy diagrams (b) with the relative Gibbs free energy  $(G_r, \text{ kJ mol}^{-1})$  for the reaction stage of  ${}^{6}[\text{Ru}(\text{PPh}_3)]^{3+} + \text{HCOO}^{-} + \text{LA} \rightarrow {}^{6}[6\text{-F-O-IM5}]^{2+} + \text{CO}_2 + \text{PPh}_3$  through hydrogenation of carboxyl carbonyl. For clarity, hydrogen atoms on carbon are not shown. Bond lengths reported in Å.



**Figure S9.** The geometric structures (a) and the schematic energy diagrams (b) with the relative Gibbs free energy  $(G_r, \text{kJ mol}^{-1})$  for the reaction stage of HCOO<sup>-</sup> + LA  $\rightarrow$  GVL + HCO<sub>3</sub><sup>-</sup>. For clarity, hydrogen atoms on carbon are not shown. Bond lengths reported in Å.

### **NOTES:** Evaluation of rate constants:

The rate constants k(T) were evaluated according to conventional transition state theory k'(T), including the tunneling correction  $\kappa(T)$  based on Wigner's formulation as follows:<sup>1</sup>

$$k' = \frac{k_B T}{hc^0} \cdot e^{\frac{-\Delta G^{\neq}}{RT}}$$

$$\kappa (T) = 1 + \frac{1}{24} |\frac{w^{\neq} h}{k_B T}|^2$$

$$k = \kappa (T) \times k'$$

$$\ln k = -\frac{E_a}{RT} + \ln A$$

$$k = A \cdot e^{\frac{-E_a}{RT}}$$

where  $k_B$  is Boltzmann's constant, T is the absolute temperature, *h* is Planck's constant,  $c^0$  is the standard concentration (1 mol dm<sup>-3</sup>),  $\Delta G^{\neq}$  is the activation Gibbs free energy barrier and  $\omega^{\neq}$  is the imaginary frequency of the TS.

#### **References:**

<sup>1.</sup> E. Wigner, J. Chem. Phys., 1937, 5, 720-723.



**Figure S10.** Arrhenius plots of rate constants for the selective control step for the reaction stage of  ${}^{6}[Ru(PPh_{3})]^{3+}$  + HCOOH + NEt<sub>3</sub>  $\rightarrow$   ${}^{6}[RuH]^{2+}$  + [HNEt<sub>3</sub>]<sup>+</sup> + PPh<sub>3</sub> + CO<sub>2</sub> in aqueous solution.



**Figure S11.** Arrhenius plots of rate constants for the selective control step for the reaction stage of  ${}^{6}[Ru(PPh_{3})]^{3+}$ + H<sub>2</sub> + NEt<sub>3</sub>  $\rightarrow {}^{6}[RuH]^{2+}$  + [HNEt<sub>3</sub>]<sup>+</sup> + PPh<sub>3</sub> in aqueous solution.

| т /И  | Р-НСООН                    | P-H <sub>2</sub>           |                                           |
|-------|----------------------------|----------------------------|-------------------------------------------|
| 1 / K | 2.80× 10^13 exp(-97523/RT) | 4.17× 10^14 exp(-56892/RT) | $k_{\mathrm{P-H}_2}/k_{\mathrm{P-HCOOH}}$ |
| 403   | 6.4E+00                    | 1.8E+07                    | 2.8E+06                                   |
| 413   | 1.3E+01                    | 2.7E+07                    | 2.1E+06                                   |
| 423   | 2.5E+01                    | 3.9E+07                    | 1.6E+06                                   |
| 433   | 4.8E+01                    | 5.7E+07                    | 1.2E+06                                   |
| 443   | 8.9E+01                    | 8.2E+07                    | 9.2E+05                                   |

**Table S1.** The reaction rate comparation of  ${}^{6}[Ru(PPh_{3})]^{3+} + HCOOH + NEt_{3} \rightarrow {}^{6}[RuH]^{2+} + [HNEt_{3}]^{+} + PPh_{3} + CO_{2}$  and  ${}^{6}[Ru(PPh_{3})]^{3+} + H_{2} + NEt_{3} \rightarrow {}^{6}[RuH]^{2+} + [HNEt_{3}]^{+} + PPh_{3}$  under the temperature range of 403 – 443 K.



 $k_{\text{P-OT}} = 3.33 \times 10^{12} \exp(-68457/RT)$ 

**Figure S12.** Arrhenius plots of rate constants for the selective control step for the reaction stage of  ${}^{6}$ [6-F-O-IM5]<sup>2+</sup> + [HNEt<sub>3</sub>]<sup>+</sup> + PPh<sub>3</sub>  $\rightarrow$  OT +  ${}^{6}$ [Ru(PPh<sub>3</sub>)]<sup>3+</sup> + H<sub>2</sub>O + NEt<sub>3</sub> in aqueous solution.



 $k_{\text{P-MFD}} = 5.00 \times 10^{10} \exp(-39136/RT)$ 

Figure S13. Arrhenius plots of rate constants for the selective control step for the reaction stage of  ${}^{6}$ [6-F-O-IM5]<sup>2+</sup> + [HNEt<sub>3</sub>]<sup>+</sup> + PPh<sub>3</sub>  $\rightarrow$  MFD +  ${}^{6}$ [Ru(PPh<sub>3</sub>)]<sup>3+</sup> + NEt<sub>3</sub> in aqueous solution

| T/V | P-OT                      | P-MFD                      |                                    |       |        |
|-----|---------------------------|----------------------------|------------------------------------|-------|--------|
| 1/K | 3.33×10^12 exp(-68457/RT) | 5.00× 10^10 exp(-39136/RT) | $k_{\text{P-MFD}}/k_{\text{P-OT}}$ | OT(%) | MFD(%) |
| 403 | 4.5E+03                   | 2.5E+05                    | 9.5E+01                            | 1.0%  | 99.0%  |
| 413 | 7.3E+03                   | 4.8E+05                    | 7.7E+01                            | 1.3%  | 98.7%  |
| 423 | 1.2E+04                   | 8.8E+05                    | 6.3E+01                            | 1.6%  | 98.4%  |
| 433 | 1.8E+04                   | 1.6E+05                    | 5.2E+01                            | 1.9%  | 98.1%  |
| 443 | 2.8E+04                   | 2.7E+06                    | 4.3E+01                            | 2.3%  | 97.7%  |

**Table S2.** The reaction rate comparation of  ${}^{6}[6\text{-F-O-IM5}]^{2+} + [\text{HNEt}_{3}]^{+} + \text{PPh}_{3} \rightarrow \text{OT} + {}^{6}[\text{Ru}(\text{PPh}_{3})]^{3+} + \text{H}_{2}\text{O} + \text{NEt}_{3} \text{ and}$  ${}^{6}[6\text{-F-O-IM5}]^{2+} + [\text{HNEt}_{3}]^{+} + \text{PPh}_{3} \rightarrow \text{MFD} + {}^{6}[\text{Ru}(\text{PPh}_{3})]^{3+} + \text{NEt}_{3} \text{ under the temperature range of 403 - 443 K.}$ 



 $k_{\text{P-C=O}} = 4.12 \times 10^6 \exp(-35530/RT)$ 

Figure S14. Arrhenius plots of rate constants for the selective control step of  ${}^{6}[RuH]^{2+} + LA \rightarrow {}^{6}[3-F-K-TS2]^{2+}$  in aqueous solution.



 $k_{\text{P-COOH}} = 2.17 \times 10^7 \exp(-56342/RT)$ 

Figure S15. Arrhenius plots of rate constants for the selective control step for the reaction stage of  ${}^{6}$ [RuH]<sup>2+</sup> + LA  $\rightarrow {}^{6}$ [6-F-O-TS2]<sup>2+</sup> in aqueous solution.

| T/V | P-C=O                     | Р-СООН                    |                                      |          |           |
|-----|---------------------------|---------------------------|--------------------------------------|----------|-----------|
| 1/K | 4.12× 10^6 exp(-35530/RT) | 2.17× 10^7 exp(-56342/RT) | $k_{\text{P-C=O}}/k_{\text{P-COOH}}$ | P-C=O(%) | P-COOH(%) |
| 403 | 1.0E+02                   | 1.1E+00                   | 9.5E+01                              | 99.0%    | 1.0%      |
| 413 | 1.3E+02                   | 1.6E+00                   | 8.1E+01                              | 98.8%    | 1.2%      |
| 423 | 1.7E+02                   | 2.4E+00                   | 7.1E+01                              | 98.6%    | 1.4%      |
| 433 | 2.1E+02                   | 3.5E+00                   | 6.2E+01                              | 98.4%    | 1.6%      |
| 443 | 2.7E+02                   | 4.9E+00                   | 5.4E+01                              | 98.2%    | 1.8%      |

**Table S3.** The reaction rate comparation of  ${}^{6}[RuH]^{2+} + LA \rightarrow {}^{6}[3-F-K-TS2]^{2+} and {}^{6}[RuH]^{2+} + LA \rightarrow {}^{6}[6-F-O-TS2]^{2+} under the temperature range of 403 – 443 K.$ 

**Table S4.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to  ${}^6\text{Ru}{}^{3+}$  and H<sub>2</sub>O for ×[Ru(H<sub>2</sub>O)<sub>n</sub>]<sup>3+</sup> (n = 0-6) at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Species                                                                                            | ZPE     | E <sub>c</sub> | $G_0$    | G <sub>c</sub> | $E_{\rm r}$ | $G_{\rm r}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------|----------------|----------|----------------|-------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>6</sup> Ru <sup>3+</sup>                                                                      | 0.00000 | -94.43419      | -0.02116 | -94.45535      |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ${}^{4}Ru^{3+}$                                                                                    | 0.00000 | -94.35303      | -0.02062 | -94.37365      |             |             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ${}^{2}Ru^{3+}$                                                                                    | 0.00000 | -94.27499      | -0.01969 | -94.29468      |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $H_2O$                                                                                             | 0.02128 | -76.41073      | -0.00070 | -76.43271      |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>6</sup> <b>D</b> <sup>3+</sup>                                                                | 0.00000 | 04 42410       | 0.02116  | 04 45525       |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $^{6}$ Pu <sup>3+</sup> + 6*H-O                                                                    | 0.00000 | -94.43419      | -0.02110 | -94.43333      | 0.0         | 0.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $6 [\mathbf{P}_{11}(\mathbf{H}_{-}\mathbf{O})]^{3+}$                                               | 0.02407 | 170 84812      | -0.02333 | 170 88247      | 0.0         | 0.0         |
| $\begin{tabular}{  c   c   c   c   c   c   c   c   c   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $^{6}$ [ <b>P</b> <sub>1</sub> ( <b>H</b> <sub>0</sub> )] <sup>3+</sup> + 5* <b>H</b> <sub>0</sub> | 0.02407 | -1/0.04012     | -0.01128 | -1/0.0034/     | Q /         | 12.1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $[\text{Ru}(\text{H}_2\text{O})] + 3^{+}\text{H}_2\text{O}$                                        | 0.1304/ | -332.90178     | -0.014// | -355.04701     | -8.4        | 12.1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $[\text{Ku}(\text{H}_2\text{O})_2]$                                                                | 0.04945 | -247.20098     | 0.00703  | -247.30279     | 14.0        | 47.0        |
| $ \begin{bmatrix} [Ru(H_2O)_3]^{3+} + 3^*H_2O & 0.13872 & -552.9829 & 0.02374 & -553.02327 & -25.5 & 74.4 \\ {}^{6}[Ru(H_2O)_4]^{3+} + 2^*H_2O & 0.14872 & -552.9829 & 0.02374 & -553.02327 & -25.5 & 74.4 \\ {}^{6}[Ru(H_2O)_4]^{3+} + 2^*H_2O & 0.14318 & -552.91419 & 0.04552 & -553.01184 & -41.0 & 104.4 \\ {}^{6}[Ru(H_2O)_3]^{3+} + 2^*H_2O & 0.14819 & -552.92012 & 0.06794 & -553.00038 & -56.6 & 134.5 \\ {}^{6}[Ru(H_2O)_3]^{3+} + 1^*H_2O & 0.14819 & -552.93090 & 0.08537 & -552.99564 & -84.9 & 146.9 \\ {}^{4}Ru^{3+} & 0.00000 & -94.35303 & -0.02062 & -94.37365 \\ {}^{4}Ru^{3+} + 6^*H_2O & 0.12767 & -552.81743 & -0.02480 & -552.96991 & 213.1 & 214.5 \\ {}^{4}[Ru(H_2O)_1]^{3+} & 0.02480 & -170.79132 & -0.00911 & -170.82523 \\ {}^{4}[Ru(H_2O)_1]^{3+} & 0.05089 & -247.22532 & 0.01143 & -247.26478 \\ {}^{4}[Ru(H_2O)_2]^{3+} + 4^*H_2O & 0.13600 & -552.86825 & 0.00864 & -552.99561 & 79.6 & 147.0 \\ {}^{4}[Ru(H_2O)_3]^{3+} & 0.07697 & -323.65876 & 0.03039 & -323.70534 \\ {}^{4}[Ru(H_2O)_3]^{3+} & 0.01432 & -400.08881 & 0.05456 & -400.13857 \\ {}^{4}[Ru(H_2O)_3]^{3+} & 0.14688 & -552.91027 & 0.05317 & -553.00398 & -30.7 & 125.0 \\ {}^{4}[Ru(H_2O)_3]^{3+} & 0.13120 & -552.89160 & 0.07443 & -552.99366 & -47.0 & 152.2 \\ {}^{4}[Ru(H_2O)_3]^{3+} & 0.014688 & -552.91027 & 0.05317 & -553.00398 & -30.7 & 125.0 \\ {}^{4}[Ru(H_2O)_3]^{3+} & 0.15159 & -552.91650 & 0.07443 & -552.99366 & -47.0 & 152.2 \\ {}^{4}[Ru(H_2O)_3]^{3+} & 0.15399 & -552.92391 & 0.09189 & -552.98601 & -66.5 & 172.2 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.0566 & -247.18733 & 0.01246 & -247.22653 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.05166 & -247.18733 & 0.01246 & -247.22653 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.05166 & -247.18733 & 0.01246 & -247.22653 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.01367 & -552.89206 & 0.00967 & -552.99524 & 129.5 & 245.7 & 272.1 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.01526 & -552.84926 & 0.03268 & -552.99524 & 129.5 & 242.5 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.01842 & -240.05557 & 0.05864 & -400.10335 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.018498 & -552.87704 & 0.05725 & -552.96877 & 56.6 & 217.5 \\ {}^{2}[Ru(H_2O)_3]^{3+} &$            | $[\text{Ru}(\text{H}_2\text{O})_2] + 4^*\text{H}_2\text{O}$                                        | 0.13455 | -552.90392     | 0.00484  | -553.03363     | -14.0       | 47.2        |
| $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[Ru(H_2O)_3]$                                                                                     | 0.07488 | -323.67609     | 0.02583  | -323.72514     |             |             |
| $\begin{tabular}{  c  c  c  c  c  c  c  c  c  c  c  c  c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $[Ru(H_2O)_3]^* + 3*H_2O$                                                                          | 0.13872 | -552.90829     | 0.02374  | -553.02327     | -25.5       | 74.4        |
| $\label{eq:constraints} \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $[Ru(H_2O)_4]^{-1}$                                                                                | 0.10062 | -400.09272     | 0.04691  | -400.14643     |             |             |
| $\begin{tabular}{  l   l   l  l  l  l  l  l  l  l  l  l $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $[Ru(H_2O)_4]^{3+} + 2*H_2O$                                                                       | 0.14318 | -552.91419     | 0.04552  | -553.01184     | -41.0       | 104.4       |
| $\begin{tabular}{  c  c  c  c  c  c  c  c  c  c  c  c  c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>6</sup> [Ru(H <sub>2</sub> O) <sub>5</sub> ] <sup>5</sup>                                     | 0.12691 | -476.50939     | 0.06863  | -476.56767     |             |             |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[Ru(H_2O)_5]^{3+} + H_2O$                                                                         | 0.14819 | -552.92012     | 0.06794  | -553.00038     | -56.6       | 134.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $^{6}[Ru(H_{2}O)_{6}]^{3+}$                                                                        | 0.15012 | -552.93090     | 0.08537  | -552.99564     | -84.9       | 146.9       |
| $ {}^{4}Ru^{3+} + 6^{*}H_{2}O & 0.12767 - 552.81743 -0.02480 -552.96991 213.1 214.5 \\ {}^{4}[Ru(H_{2}O)]^{3+} & 0.02480 -170.79132 -0.00911 -170.82523 \\ {}^{4}[Ru(H_{2}O)]^{3+} + 5^{*}H_{2}O & 0.13120 -552.84498 -0.01260 -552.98878 140.7 165.0 \\ {}^{4}[Ru(H_{2}O)_{2}]^{3+} & 0.05089 -247.22532 & 0.01143 -247.26478 \\ {}^{4}[Ru(H_{2}O)_{2}]^{3+} + 4^{*}H_{2}O & 0.13600 -552.86825 & 0.00864 -552.99561 79.6 147.0 \\ {}^{4}[Ru(H_{2}O)_{3}]^{3+} & 0.07697 - 323.65876 & 0.03039 - 323.70534 \\ {}^{4}[Ru(H_{2}O)_{3}]^{3+} + 3^{*}H_{2}O & 0.14081 -552.89096 & 0.02830 -553.00347 & 20.0 126.4 \\ {}^{4}[Ru(H_{2}O)_{4}]^{3+} & 0.10432 -400.08881 & 0.05456 -400.13857 \\ {}^{4}[Ru(H_{2}O)_{4}]^{3+} + 2^{*}H_{2}O & 0.14688 -552.91027 & 0.05317 -553.00398 -30.7 125.0 \\ {}^{4}[Ru(H_{2}O)_{5}]^{3+} & 0.13031 -476.50577 & 0.07513 -476.56095 \\ {}^{4}[Ru(H_{2}O)_{5}]^{3+} & 0.15159 -552.91650 & 0.07443 -552.99366 -47.0 152.2 \\ {}^{4}[Ru(H_{2}O)_{5}]^{3+} & 0.15399 -552.92391 & 0.09189 -552.98601 -66.5 172.2 \\ {}^{2}Ru^{3+} + 6^{*}H_{2}O & 0.12767 -552.73939 -0.02388 -552.89094 & 418.0 & 421.8 \\ {}^{2}[Ru(H_{2}O)_{5}]^{3+} & 0.05166 -247.18733 & 0.01246 -247.22653 \\ {}^{2}[Ru(H_{2}O)_{2}]^{3+} + 4^{*}H_{2}O & 0.13677 -552.80261 & -0.01194 -552.94795 & 245.7 & 272.1 \\ {}^{2}[Ru(H_{2}O)_{2}]^{3+} & 0.05166 -247.18733 & 0.01246 -247.22653 \\ {}^{2}[Ru(H_{2}O)_{3}]^{3+} & 0.07882 -323.61706 & 0.03477 -323.66111 \\ {}^{2}[Ru(H_{2}O)_{3}]^{3+} + 3^{*}H_{2}O & 0.14266 -552.8927 & 0.05864 & 400.10335 \\ {}^{2}[Ru(H_{2}O)_{3}]^{3+} & 0.1642 & 400.05557 & 0.05864 & 400.10335 \\ {}^{2}[Ru(H_{2}O)_{3}]^{3+} & 0.1642 & 400.05557 & 0.05864 & 400.10335 \\ {}^{2}[Ru(H_{2}O)_{3}]^{3+} & 0.1642 & -400.05557 & 0.05864 & 400.10335 \\ {}^{2}[Ru(H_{2}O)_{3}]^{3+} & 0.1642 & -400.05557 & 0.05864 & 400.10335 \\ {}^{2}[Ru(H_{2}O)_{3}]^{3+} & 0.1642 & -400.05557 & 0.05864 & 400.10335 \\ {}^{2}[Ru(H_{2}O)_{3}]^{3+} & 0.1642 & -400.05557 & 0.05864 & 400.10335 \\ {}^{2}[Ru(H_{2}O)_{3}]^{3+} & 0.13203 & -476.48854 & 0.07921 & -476.54136 \\ {}^{2}[Ru(H_{2}O)_{3}]^{3+} & 0.15331$                         | ${}^{4}Ru^{3+}$                                                                                    | 0.00000 | -94 35303      | -0.02062 | -94 37365      |             |             |
| $ {}^{4}[Ru(H_{2}O)]^{3+} = 0.12167 - 552.17175 - 0.02166 - 552.90371 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 - 2163 -$                                                  | ${}^{4}\text{Ru}^{3+} + 6*\text{H}_{2}\text{O}$                                                    | 0.12767 | -552 81743     | -0.02480 | -552 96991     | 213.1       | 214 5       |
| $ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $4[Ru(H_2O)]^{3+}$                                                                                 | 0.02480 | -170 79132     | -0.00911 | -170 82523     | 210.1       | 211.0       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ${}^{4}[\text{Ru}(\text{H}_{2}\text{O})]^{3+} + 5*\text{H}_{2}\text{O}$                            | 0.13120 | -552 84408     | -0.01260 | -552 08878     | 140.7       | 165.0       |
| $ \begin{tabular}{ llambda   llambd$                                                  | ${}^{4}[Ru(H_{2}O)_{2}]^{3+}$                                                                      | 0.05080 | -332.0++78     | 0.011//3 | -332.96678     | 140.7       | 105.0       |
| $ \begin{bmatrix} Ru(H_2O)_2 \end{bmatrix}^{3+} + 4^*H_2O & 0.13000 & -352.0022 \end{bmatrix} 0.00304 & -352.99301 & 75.0 & 147.0 \\ & [Ru(H_2O)_3]^{3+} & 0.07697 & -323.65876 & 0.03039 & -323.70534 \\ & [Ru(H_2O)_3]^{3+} + 3^*H_2O & 0.14081 & -552.89096 & 0.02830 & -553.00347 & 20.0 & 126.4 \\ & & [Ru(H_2O)_4]^{3+} + 2^*H_2O & 0.14081 & -552.89096 & 0.02330 & -553.00398 & -30.7 & 125.0 \\ & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ${}^{4}\Gamma P_{12}(H_{2}O) \cdot 1^{3+} + 4*H_{2}O$                                              | 0.13600 | 552 86825      | 0.001145 | -247.20478     | 70.6        | 147.0       |
| $ \begin{tabular}{ llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ${}^{4}[\mathbf{R}_{12}(\mathbf{H},\mathbf{O}),1^{3+}]$                                            | 0.13000 | 222.60025      | 0.00004  | 222 70524      | 79.0        | 147.0       |
| $ \begin{bmatrix} Ru(H_2O)_4]^{3+} + 3^*H_2O & 0.14081 & -332.69060 & 0.02830 & -335.00347 & 20.0 & 120.4 \\ {}^{4}[Ru(H_2O)_4]^{3+} & 0.10432 & -400.08881 & 0.05456 & -400.13857 \\ {}^{4}[Ru(H_2O)_4]^{3+} + 2^*H_2O & 0.14688 & -552.91027 & 0.05317 & -553.00398 & -30.7 & 125.0 \\ {}^{4}[Ru(H_2O)_5]^{3+} & 0.13031 & -476.50577 & 0.07513 & -476.56095 \\ {}^{4}[Ru(H_2O)_5]^{3+} & H_2O & 0.15159 & -552.91650 & 0.07443 & -552.99366 & -47.0 & 152.2 \\ {}^{4}[Ru(H_2O)_6]^{3+} & 0.15399 & -552.92391 & 0.09189 & -552.98601 & -66.5 & 172.2 \\ {}^{2}Ru^{3+} + 6^*H_2O & 0.12767 & -552.73939 & -0.02388 & -552.89094 & 418.0 & 421.8 \\ {}^{2}[Ru(H_2O)]^{3+} & 0.02461 & -170.75134 & -0.00846 & -170.78441 \\ {}^{2}[Ru(H_2O)]^{3+} + 5^*H_2O & 0.13100 & -552.80501 & -0.01194 & -552.94795 & 245.7 & 272.1 \\ {}^{2}[Ru(H_2O)_2]^{3+} & 0.05166 & -247.18733 & 0.01246 & -247.22653 \\ {}^{2}[Ru(H_2O)_2]^{3+} & 0.07882 & -323.61706 & 0.03477 & -323.66111 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.14266 & -552.84926 & 0.03268 & -552.95924 & 129.5 & 242.5 \\ {}^{2}[Ru(H_2O)_4]^{3+} & 0.10642 & -400.05557 & 0.05864 & -400.10335 \\ {}^{2}[Ru(H_2O)_4]^{3+} + 2^*H_2O & 0.14288 & -552.87704 & 0.05725 & -552.96877 & 56.6 & 217.5 \\ {}^{2}[Ru(H_2O)_4]^{3+} & 0.13203 & -476.48854 & 0.07921 & -476.54136 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & -552.89927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.1526 & 552 & 0.2766 & 0.00007 & -552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.1526 & 552 & 0.0260 & 0.00007 & -552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.1526 & 552 & 0.0260 & 0.00007 & -552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} & H_2O & 0.15331 & -552.89927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} & H_2O & 0.15331 & -552.89927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} & H_2O & 0.15331 & -552.89927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} & H_2O & 0.15331 & -552.89927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} & H_2O & 0.15331 & -552.89927 & 0.0785$             | ${}^{4}(\mathbf{R}_{2})(\mathbf{H}_{0}) = {}^{3+} + 2*\mathbf{H}_{0}$                              | 0.07097 | -525.05870     | 0.03039  | -525.70554     | 20.0        | 126.4       |
| $ \begin{bmatrix} Ru(H_2O)_4 \end{bmatrix}^{3^+} + 2^*H_2O & 0.14688 & -552.91027 & 0.05317 & -553.00398 & -30.7 & 125.0 \\ {}^4[Ru(H_2O)_5]^{3^+} & 0.13031 & -476.50577 & 0.07513 & -476.56095 \\ {}^4[Ru(H_2O)_5]^{3^+} + H_2O & 0.15159 & -552.91650 & 0.07443 & -552.99366 & -47.0 & 152.2 \\ {}^4[Ru(H_2O)_6]^{3^+} & 0.15399 & -552.92391 & 0.09189 & -552.98601 & -66.5 & 172.2 \\ {}^2Ru^{3^+} + 6^*H_2O & 0.12767 & -552.73939 & -0.02388 & -552.89094 & 418.0 & 421.8 \\ {}^2[Ru(H_2O)]^{3^+} & 0.02461 & -170.75134 & -0.00846 & -170.78441 \\ {}^2[Ru(H_2O)]^{3^+} + 5^*H_2O & 0.13100 & -552.80501 & -0.01194 & -552.94795 & 245.7 & 272.1 \\ {}^2[Ru(H_2O)]^{3^+} & 0.05166 & -247.18733 & 0.01246 & -247.22653 \\ {}^2[Ru(H_2O)_2]^{3^+} & 0.07882 & -323.61706 & 0.03477 & -323.66111 \\ {}^2[Ru(H_2O)_3]^{3^+} + 3^*H_2O & 0.14266 & -552.84926 & 0.03268 & -552.95924 & 129.5 & 242.5 \\ {}^2[Ru(H_2O)_4]^{3^+} & 0.10642 & -400.05557 & 0.05864 & -400.10335 \\ {}^2[Ru(H_2O)_4]^{3^+} + 2^*H_2O & 0.14288 & -552.87704 & 0.05725 & -552.96877 & 56.6 & 217.5 \\ {}^2[Ru(H_2O)_4]^{3^+} + 1_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^2[Ru(H_2O)_3]^{3^+} + H$ | $4 [\text{Ru}(\text{H}_2\text{O})_3] + 3^{-1}\text{H}_2\text{O}$                                   | 0.14081 | -332.89090     | 0.02850  | -335.00547     | 20.0        | 120.4       |
| $ \begin{bmatrix} \operatorname{Ru}(\operatorname{H}_2 O)_{4]} + 2^{\operatorname{sH}_2 O} & 0.14688 & -552.91027 & 0.05317 & -553.00398 & -30.7 & 125.0 \\ {}^{4}[\operatorname{Ru}(\operatorname{H}_2 O)_{5]}^{3+} & 0.13031 & -476.50577 & 0.07513 & -476.56095 \\ {}^{4}[\operatorname{Ru}(\operatorname{H}_2 O)_{5]}^{3+} + \operatorname{H}_2 O & 0.15159 & -552.91650 & 0.07443 & -552.99366 & -47.0 & 152.2 \\ {}^{4}[\operatorname{Ru}(\operatorname{H}_2 O)_{6]}^{3+} & 0.15399 & -552.92391 & 0.09189 & -552.98601 & -66.5 & 172.2 \\ {}^{2}\operatorname{Ru}^{3+} + 6^{*}\operatorname{H}_2 O & 0.12767 & -552.73939 & -0.02388 & -552.89094 & 418.0 & 421.8 \\ {}^{2}[\operatorname{Ru}(\operatorname{H}_2 O)_{3}]^{3+} & 0.02461 & -170.75134 & -0.00846 & -170.78441 \\ {}^{2}[\operatorname{Ru}(\operatorname{H}_2 O)_{2}]^{3+} + 5^{*}\operatorname{H}_{2} O & 0.13100 & -552.80501 & -0.01194 & -552.94795 & 245.7 & 272.1 \\ {}^{2}[\operatorname{Ru}(\operatorname{H}_2 O)_{2}]^{3+} & 0.05166 & -247.18733 & 0.01246 & -247.22653 \\ {}^{2}[\operatorname{Ru}(\operatorname{H}_2 O)_{2}]^{3+} + 4^{*}\operatorname{H}_{2} O & 0.13677 & -552.83026 & 0.00967 & -552.95736 & 179.4 & 247.5 \\ {}^{2}[\operatorname{Ru}(\operatorname{H}_2 O)_{3}]^{3+} & 0.07882 & -323.61706 & 0.03477 & -323.66111 \\ {}^{2}[\operatorname{Ru}(\operatorname{H}_2 O)_{4}]^{3+} + 3^{*}\operatorname{H}_{2} O & 0.14266 & -552.84926 & 0.03268 & -552.95924 & 129.5 & 242.5 \\ {}^{2}[\operatorname{Ru}(\operatorname{H}_2 O)_{4}]^{3+} & 0.10642 & -400.05557 & 0.05864 & -400.10335 \\ {}^{2}[\operatorname{Ru}(\operatorname{H}_2 O)_{4}]^{3+} & 0.13203 & -476.48854 & 0.07921 & -476.54136 \\ {}^{2}[\operatorname{Ru}(\operatorname{H}_2 O)_{3}]^{3+} & \operatorname{H}_{2} O & 0.15331 & -552.89927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ {}^{2}[\operatorname{Ru}(\operatorname{H}_2 O)_{3}]^{3+} & \operatorname{H}_{2} O & 0.15331 & -552.89927 & 0.07851 & -552.97407 \\ {}^{2}\operatorname{I} \operatorname{I} \operatorname{I} \operatorname{I} \operatorname{I} \operatorname{I} \operatorname{I} \operatorname{I}$                                     | $[Ku(H_2O)_4]$                                                                                     | 0.10432 | -400.08881     | 0.05450  | -400.13837     | 20.7        | 125.0       |
| $      \begin{bmatrix} Ru(H_2O)_5 \end{bmatrix}^{3+} + H_2O & 0.15031 & -476.50577 & 0.07513 & -476.56095 \\                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $[\text{Ru}(\text{H}_2\text{O})_4] + 2^*\text{H}_2\text{O}$                                        | 0.14688 | -552.91027     | 0.05317  | -553.00398     | -30./       | 125.0       |
| $ \begin{bmatrix} Ru(H_2O)_5 \end{bmatrix}^{+} + H_2O & 0.15159552.91650 & 0.07443 & .552.99366 & .47.0 & 152.2 \\ {}^{4}[Ru(H_2O)_6]^{3+} & 0.15399 & .552.92391 & 0.09189 & .552.98601 & .66.5 & 172.2 \\ {}^{2}Ru^{3+} + 6^{*}H_2O & 0.12767 & .552.73939 & .0.02388 & .552.89094 & 418.0 & 421.8 \\ {}^{2}[Ru(H_2O)]^{3+} & 0.02461 & .170.75134 & .0.00846 & .170.78441 \\ {}^{2}[Ru(H_2O)]^{3+} + 5^{*}H_2O & 0.13100 & .552.80501 & .0.01194 & .552.94795 & 245.7 & 272.1 \\ {}^{2}[Ru(H_2O)_2]^{3+} & 0.05166 & .247.18733 & 0.01246 & .247.22653 \\ {}^{2}[Ru(H_2O)_2]^{3+} + 4^{*}H_2O & 0.13677 & .552.83026 & 0.00967 & .552.95736 & 179.4 & 247.5 \\ {}^{2}[Ru(H_2O)_3]^{3+} & 0.07882 & .323.61706 & 0.03477 & .323.66111 \\ {}^{2}[Ru(H_2O)_3]^{3+} + 3^{*}H_2O & 0.14266 & .552.84926 & 0.03268 & .552.95924 & 129.5 & 242.5 \\ {}^{2}[Ru(H_2O)_4]^{3+} & 0.10642 & .400.05557 & 0.05864 & .400.10335 \\ {}^{2}[Ru(H_2O)_4]^{3+} + 2^{*}H_2O & 0.14289 & .552.87704 & 0.05725 & .552.96877 & 56.6 & 217.5 \\ {}^{2}[Ru(H_2O)_4]^{3+} + 1^{*}H_2O & 0.15331 & .552.89927 & 0.07851 & .552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & .552.89927 & 0.07851 & .552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15326 & .552.09260 & 0.00002 & .552.09102 & .62.2 & 195.2 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & .552.89927 & 0.07851 & .552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & .552.8927 & 0.07851 & .552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & .552.8927 & 0.07851 & .552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & .552.8927 & 0.07851 & .552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & .552.8927 & 0.07851 & .552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & .552.8927 & 0.07851 & .552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & .552.8927 & 0.07851 & .552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & .552.8927 & 0.07851 & .552.97407 & -1.8 & 203.6 \\ {}^{2}[Ru(H_2O)_3]^{3+} + H_2O & 0.15331 & .552.8927 & 0$      | $[\text{Ru}(\text{H}_2\text{O})_5]$                                                                | 0.13031 | -4/6.505//     | 0.07513  | -4/6.56095     | 15 0        | 1.50.0      |
| $ \begin{bmatrix} Ru(H_2O)_6 \end{bmatrix}^{3+} & 0.15399 & -552.92391 & 0.09189 & -552.98601 & -66.5 & 172.2 \\ \\            ^2Ru^{3+} & 6^*H_2O & 0.12767 & -552.73939 & -0.02388 & -552.89094 & 418.0 & 421.8 \\ \\            ^2[Ru(H_2O)]^{3+} & 0.02461 & -170.75134 & -0.00846 & -170.78441 \\ \\ \\            ^2[Ru(H_2O)]^{3+} & +5^*H_2O & 0.13100 & -552.80501 & -0.01194 & -552.94795 & 245.7 & 272.1 \\ \\                  ^2[Ru(H_2O)_2]^{3+} & 0.05166 & -247.18733 & 0.01246 & -247.22653 \\ \\ \\             ^2[Ru(H_2O)_2]^{3+} & 4^*H_2O & 0.13677 & -552.83026 & 0.00967 & -552.95736 & 179.4 & 247.5 \\ \\ \\                 ^2[Ru(H_2O)_3]^{3+} & 0.07882 & -323.61706 & 0.03477 & -323.66111 \\ \\ \\ \\             ^2[Ru(H_2O)_3]^{3+} & 0.10642 & -400.05557 & 0.05864 & -400.10335 \\ \\ \\                ^2[Ru(H_2O)_4]^{3+} & 0.10642 & -400.05557 & 0.05864 & -400.10335 \\ \\ \\              ^2[Ru(H_2O)_4]^{3+} & 0.13203 & -476.48854 & 0.07921 & -476.54136 \\ \\ \\                ^2[Ru(H_2O)_3]^{3+} & H_2O & 0.15331 & -552.8927 & 0.07851 & -552.97407 & -1.8 & 203.6 \\ \\                  ^2Ru(H_2O)_3]^{3+} & 0.15226 & 552 & 0.2660 & 0.00002 & 552 & 0.0102 & (-2.2) & 195.7 \\ \\                                 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $[Ru(H_2O)_5]^+ + H_2O$                                                                            | 0.15159 | -552.91650     | 0.07443  | -552.99366     | -47.0       | 152.2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $[\mathrm{Ru}(\mathrm{H}_2\mathrm{O})_6]^\circ$                                                    | 0.15399 | -552.92391     | 0.09189  | -552.98601     | -66.5       | 172.2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |         |                |          |                |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ${}^{2}Ru^{3+}$                                                                                    | 0.00000 | -94.27499      | -0.01969 | -94.29468      |             |             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ${}^{2}\text{Ru}^{3+} + 6*\text{H}_{2}\text{O}$                                                    | 0.12767 | -552.73939     | -0.02388 | -552.89094     | 418.0       | 421.8       |
| $ \begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $^{2}[Ru(H_{2}O)]^{3+}$                                                                            | 0.02461 | -170.75134     | -0.00846 | -170.78441     |             |             |
| $ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $^{2}$ [Ru(H <sub>2</sub> O)] <sup>3+</sup> + 5*H <sub>2</sub> O                                   | 0.13100 | -552.80501     | -0.01194 | -552.94795     | 245.7       | 272.1       |
| $ {}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{2}]^{3+} + 4^{*}\mathrm{H}_{2}\mathrm{O}  0.13677  -552.83026  0.00967  -552.95736  179.4  247.5 \\ {}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{3}]^{3+}  0.07882  -323.61706  0.03477  -323.66111 \\ {}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{3}]^{3+} + 3^{*}\mathrm{H}_{2}\mathrm{O}  0.14266  -552.84926  0.03268  -552.95924  129.5  242.5 \\ {}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{4}]^{3+}  0.10642  -400.05557  0.05864  -400.10335 \\ {}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{4}]^{3+} + 2^{*}\mathrm{H}_{2}\mathrm{O}  0.14898  -552.87704  0.05725  -552.96877  56.6  217.5 \\ {}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{5}]^{3+}  0.13203  -476.48854  0.07921  -476.54136 \\ {}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{5}]^{3+} + \mathrm{H}_{2}\mathrm{O}  0.15331  -552.89927  0.07851  -552.97407  -1.8  203.6 \\ {}^{2}\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{3}]^{3+} + \mathrm{H}_{2}\mathrm{O}  0.15226  552.09269  0.00002  552.9102  (2.2.1)^{85} 2 \\ {}^{2}\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{3}]^{3+} + \mathrm{H}_{2}\mathrm{O}  0.15226  0.00002  552.9102  (2.2.1)^{85} 2 \\ {}^{2}\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{3}]^{3+} + \mathrm{H}_{2}\mathrm{O}  0.15266  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.000002  0.000002  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.0000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.00000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $^{2}$ [Ru(H <sub>2</sub> O) <sub>2</sub> ] <sup>3+</sup>                                          | 0.05166 | -247.18733     | 0.01246  | -247.22653     |             |             |
| $\label{eq:relation} \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ${}^{2}[Ru(H_{2}O)_{2}]^{3+} + 4*H_{2}O$                                                           | 0.13677 | -552.83026     | 0.00967  | -552.95736     | 179.4       | 247.5       |
| $ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $^{2}[Ru(H_{2}O)_{3}]^{3+}$                                                                        | 0.07882 | -323.61706     | 0.03477  | -323.66111     |             |             |
| ${}^{2}[\text{Ru}(\text{H}_{2}\text{O})_{4}]^{3+} = 0.10642 - 400.05557 - 0.05864 - 400.10335 - 2[\text{Ru}(\text{H}_{2}\text{O})_{4}]^{3+} + 2^{*}\text{H}_{2}\text{O} - 0.14898 - 552.87704 - 0.05725 - 552.96877 - 56.6 - 217.5 - 2[\text{Ru}(\text{H}_{2}\text{O})_{5}]^{3+} - 0.13203 - 476.48854 - 0.07921 - 476.54136 - 2[\text{Ru}(\text{H}_{2}\text{O})_{5}]^{3+} + \text{H}_{2}\text{O} - 0.15331 - 552.89927 - 0.07851 - 552.97407 - 1.8 - 203.6 - 2[\text{Ru}(\text{H}_{2}\text{O})_{3}]^{3+} + \text{H}_{2}\text{O} - 0.15331 - 552.89927 - 0.07851 - 552.97407 - 1.8 - 203.6 - 2[\text{Ru}(\text{H}_{2}\text{O})_{3}]^{3+} - 0.15226 - 552.97269 - 0.00002 - 552.98102 - (2.21)^{85}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(2.21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2(21)^{15}2 - 2$                                                                                                                            | ${}^{2}[Ru(H_{2}O)_{3}]^{3+} + 3*H_{2}O$                                                           | 0.14266 | -552.84926     | 0.03268  | -552.95924     | 129.5       | 242.5       |
| ${}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{4}]^{3+} + 2^{*}\mathrm{H}_{2}\mathrm{O}  0.14898  -552.87704  0.05725  -552.96877  56.6  217.5$ ${}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{5}]^{3+}  0.13203  -476.48854  0.07921  -476.54136$ ${}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{5}]^{3+} + \mathrm{H}_{2}\mathrm{O}  0.15331  -552.89927  0.07851  -552.97407  -1.8  203.6$ ${}^{2}[\mathrm{Ru}(\mathrm{H}_{2}\mathrm{O})_{4}]^{3+}  0.15226  552.92269  0.00992  552.99109  (2.2.1952)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $^{2}[Ru(H_{2}O)_{4}]^{3+}$                                                                        | 0.10642 | -400.05557     | 0.05864  | -400,10335     | /.0         |             |
| ${}^{2}[\text{Ru}(\text{H}_{2}\text{O})_{5}]^{3+} = 0.13203 - 476.48854 - 0.07921 - 476.54136$ ${}^{2}[\text{Ru}(\text{H}_{2}\text{O})_{5}]^{3+} + \text{H}_{2}\text{O} = 0.15331 - 552.89927 - 0.07851 - 552.97407 - 1.8 - 203.6$ ${}^{2}[\text{Ru}(\text{H}_{2}\text{O})_{3}]^{3+} = 0.15226 - 552.92269 - 0.09922 - 552.98102 - (2.2.185.2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $^{2}[Ru(H_{2}O)_{4}]^{3+} + 2*H_{2}O$                                                             | 0.14898 | -552.87704     | 0.05725  | -552,96877     | 56.6        | 217.5       |
| ${}^{2}[\text{Ru}(\text{H}_{2}\text{O})_{5}]^{3+} + \text{H}_{2}\text{O}  0.15331  -552.89927  0.07851  -552.97407  -1.8  203.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ${}^{2}[Ru(H_{2}O)_{4}]^{3+}$                                                                      | 0.13203 | -476 48854     | 0.07921  | -476 54136     | 20.0        | _1,.3       |
| $\frac{2}{2} \left[ P_{11}(1_{12}, 0_{13})^{3+1} - 0.15251 - 552.67227 - 0.00002 - 552.07407 - 1.8 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - 205.0 - $                                          | ${}^{2}[Ru(H_{2}O)_{2}]^{3+} + H_{2}O$                                                             | 0 15331 | -552 80027     | 0.07921  | -552 07/07     | -18         | 203.6       |
| (1) $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$ $(1)$                                                     | ${}^{2}[R_{11}(H_{2}O)_{2}]^{3+}$                                                                  | 0.15826 | -552 92260     | 0.00003  | -552 98102     | -63.3       | 185.3       |

**Table S5.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to  ${}^{6}$ Ru ${}^{3+}$ , PPh<sub>3</sub>, NEt<sub>3</sub> and PY for  ${}^{6}$ [Ru(H<sub>2</sub>O)]<sup>3+</sup>,  ${}^{6}$ [Ru(PPh<sub>3</sub>)]<sup>3+</sup>,  ${}^{6}$ [Ru(NEt<sub>3</sub>)]<sup>3+</sup> and  ${}^{6}$ [Ru(PY)]<sup>3+</sup> complexes at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                       | ZPE     | E <sub>c</sub> | $G_0$    | $G_{c}$     | $E_{\rm r}$ | $G_{\rm r}$ |
|-----------------------------------------------------------------------------------------------|---------|----------------|----------|-------------|-------------|-------------|
| <sup>6</sup> Ru <sup>3+</sup>                                                                 | 0.00000 | -94.43419      | -0.02116 | -94.45535   |             |             |
| $H_2O$                                                                                        | 0.02128 | -76.41073      | -0.00070 | -76.43271   |             |             |
| PPh <sub>3</sub>                                                                              | 0.27244 | -1035.47240    | 0.20382  | -1035.54102 |             |             |
| NEt <sub>3</sub>                                                                              | 0.20387 | -292.05597     | 0.15681  | -292.10303  |             |             |
| РҮ                                                                                            | 0.08809 | -248.07271     | 0.05210  | -248.10871  |             |             |
| $^{6}\mathrm{Ru}^{3+}+\mathrm{H}_{2}\mathrm{O}+\mathrm{PPh}_{3}+\mathrm{NEt}_{3}+\mathrm{PY}$ | 0.58568 | -1746.44599    | 0.39087  | -1746.64081 | 0.0         | 0.0         |
| ${}^{6}[Ru(H_{2}O)]^{3+}$                                                                     | 0.02440 | -170.84837     | -0.01069 | -170.88345  |             |             |
| $^{6}$ [Ru(H <sub>2</sub> O)] <sup>3+</sup> + PPh <sub>3</sub> + NEt <sub>3</sub> + PY        | 0.58880 | -1746.44944    | 0.40203  | -1746.63620 | -9.1        | 12.1        |
| $^{6}[Ru(PPh_{3})]^{3+}$                                                                      | 0.27415 | -1129.92479    | 0.19644  | -1130.00251 |             |             |
| $^{6}$ [Ru(PPh <sub>3</sub> )] <sup>3+</sup> + NEt <sub>3</sub> + PY + H <sub>2</sub> O       | 0.58740 | -1746.46420    | 0.40465  | -1746.64695 | -47.8       | -16.1       |
| $^{6}[Ru(NEt_{3})]^{3+}$                                                                      | 0.20889 | -386.50218     | 0.15581  | -386.55526  |             |             |
| $^{6}$ [Ru(NEt <sub>3</sub> )] <sup>3+</sup> + PY + H <sub>2</sub> O + PPh <sub>3</sub>       | 0.59070 | -1746.45802    | 0.41103  | -1746.63769 | -31.6       | 8.2         |
| <sup>6</sup> [Ru(PY)] <sup>3+</sup>                                                           | 0.09029 | -342.51063     | 0.04525  | -342.55568  |             |             |
| $^{\circ}$ [Ru(PY)] <sup>5+</sup> + H <sub>2</sub> O + PPh <sub>3</sub> + NEt <sub>3</sub>    | 0.58788 | -1746.44973    | 0.40518  | -1746.63243 | -9.8        | 22.0        |

**Table S6.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for hydrogenation of LA to GVL, OT and MFD with H<sub>2</sub> as H-source at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                  | ZPE     | E <sub>c</sub> | $G_0$    | G <sub>c</sub> | E <sub>r</sub> | $G_{\rm r}$ |
|------------------------------------------|---------|----------------|----------|----------------|----------------|-------------|
| LA                                       | 0.12706 | -420.80704     | 0.07904  | -420.85507     |                |             |
| $H_2$                                    | 0.00981 | -1.15796       | -0.00228 | -1.17005       |                |             |
| НСООН                                    | 0.03342 | -189.70312     | 0.00298  | -189.73356     |                |             |
| NEt <sub>3</sub>                         | 0.20387 | -292.05597     | 0.15681  | -292.10303     |                |             |
| $H_2O$                                   | 0.02128 | -76.41073      | -0.00070 | -76.43271      |                |             |
| GVL                                      | 0.12519 | -345.57698     | 0.08391  | -345.61826     |                |             |
| OT                                       | 0.12081 | -345.55701     | 0.07452  | -345.60330     |                |             |
| MFD                                      | 0.15403 | -421.96688     | 0.10976  | -422.01115     |                |             |
| $LA + HCOOH + H_2 + NEt_3$               | 0.37416 | -903.72409     | 0.23655  | -903.86170     | 0.0            | 0.0         |
| H <sub>2</sub>                           | 0.00981 | -1.15796       | -0.00228 | -1.17005       |                |             |
| $H_2 + I A + HCOOH + NEt_2$              | 0 37416 | -903 72409     | 0.23655  | -903 86170     | 0.0            | 0.0         |
| U-H-G-IM1                                | 0.14178 | -421 96102     | 0.08835  | -422 01445     | 0.0            | 0.0         |
| $U_{-}H_{-}G_{-}IM1 + HCOOH + NEt_{2}$   | 0.37907 | -903 72011     | 0.24815  | -903 85103     | 10.5           | 28.0        |
| U-H-G-TS1                                | 0.14368 | -421 87004     | 0.09560  | -421 91812     | 10.5           | 20.0        |
| $U_{-H}G_{-}TS1 + HCOOH + NEt_{2}$       | 0.38097 | -903 62912     | 0.25539  | -903 75470     | 240.2          | 280.0       |
| U-H-G-IM2                                | 0.15125 | -421 98331     | 0.10259  | -422 03196     | 249.3          | 280.9       |
| $U_{-H} - G_{-IM2} + HCOOH + NEt_{-}$    | 0.38854 | -903 74230     | 0.10239  | -903 86854     | 48.0           | 18.0        |
| U-H-G-IM3                                | 0.15203 | -/21 98579     | 0.20237  | -703.00054     | -40.0          | -18.0       |
| $U_{-H}$ -G-IM3 + HCOOH + NEt            | 0.15205 | -903 74487     | 0.10522  | -903 86017     | 54.6           | 10.6        |
|                                          | 0.14640 | 421 01212      | 0.20502  | 421 05724      | -54.0          | -19.0       |
| U = U = 0.132                            | 0.28270 | -421.91313     | 0.10229  | 002 70202      | 126.2          | 178.0       |
| UHGIMA                                   | 0.38379 | 421 08840      | 0.20208  | 422 02001      | 130.2          | 178.0       |
| U = U = U = U = U = U = U = U = U = U =  | 0.14909 | -421.98840     | 0.09858  | 002 87640      | 61.4           | 20 0        |
| CVI                                      | 0.12510 | 245 57608      | 0.23817  | 245 61826      | -01.4          | -38.8       |
| GVL                                      | 0.12319 | -343.37098     | 0.08591  | 002 00755      | 50.6           | 67.0        |
|                                          | 0.38370 | -905.74080     | 0.24300  | -905.88755     | -39.0          | -07.9       |
| U-H-M-IM1                                | 0.14173 | -421.96106     | 0.08761  | -422.01518     |                |             |
| U-H-M-IM1 + HCOOH + NEt <sub>3</sub>     | 0.37902 | -903.72014     | 0.24740  | -903.85176     | 10.4           | 26.1        |
| U-H-M-TS1                                | 0.14101 | -421.86143     | 0.09041  | -421.91203     |                |             |
| U-H-M-TS1 + HCOOH + NEt <sub>3</sub>     | 0.37830 | -903.62051     | 0.25020  | -903.74861     | 271.9          | 296.9       |
| U-H-M-IM2                                | 0.15071 | -421.96828     | 0.10022  | -422.01878     |                |             |
| U-H-M-IM2 + HCOOH + NEt <sub>3</sub>     | 0.38800 | -903.72737     | 0.26001  | -903.85536     | -8.6           | 16.6        |
| U-H-M-IM3                                | 0.15132 | -421.96761     | 0.10299  | -422.01594     |                |             |
| $U-H-M-IM3 + HCOOH + NEt_3$              | 0.38861 | -903.72669     | 0.26278  | -903.85252     | -6.8           | 24.1        |
| U-H-M-TS2                                | 0.14708 | -421.90574     | 0.10326  | -421.94956     |                |             |
| U-H-M-TS2 + HCOOH + NEt <sub>3</sub>     | 0.38437 | -903.66482     | 0.26306  | -903.78614     | 155.6          | 198.4       |
| MFD                                      | 0.15403 | -421.96688     | 0.10976  | -422.01115     |                |             |
| $MFD + HCOOH + NEt_3$                    | 0.39132 | -903.72596     | 0.26955  | -903.84773     | -4.9           | 36.7        |
| 2                                        |         |                |          |                |                |             |
| U-H-O-TS2                                | 0.14479 | -421.90582     | 0.09560  | -421.95502     |                |             |
| $U-H-O-TS2 + HCOOH + NEt_3$              | 0.38208 | -903.66491     | 0.25539  | -903.79160     | 155.4          | 184.1       |
| U-H-O-IM3                                | 0.14516 | -421.96767     | 0.08844  | -422.02439     |                |             |
| U-H-O-IM3 $+$ HCOOH $+$ NEt <sub>3</sub> | 0.38245 | -903.72675     | 0.24823  | -903.86097     | -7.0           | 1.9         |
| OT                                       | 0.12081 | -345.55701     | 0.07452  | -345.60330     |                |             |
| $OT + HCOOH + NEt_3 + H_2O$              | 0.37938 | -903.72683     | 0.23361  | -903.87259     | -7.2           | -28.6       |

**Table S7.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for hydrogenation of LA to GVL, OT and MFD with HCOOH as H-source at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                        | ZPE      | E <sub>c</sub> | $G_0$    | $G_{c}$    | $E_{\rm r}$ | $G_{\rm r}$ |
|------------------------------------------------|----------|----------------|----------|------------|-------------|-------------|
| LA                                             | 0.12706  | -420.80704     | 0.07904  | -420.85507 |             |             |
| $H_2$                                          | 0.00981  | -1.15796       | -0.00228 | -1.17005   |             |             |
| HCOOH                                          | 0.03342  | -189.70312     | 0.00298  | -189.73356 |             |             |
| NEt <sub>3</sub>                               | 0.20387  | -292.05597     | 0.15681  | -292.10303 |             |             |
| H <sub>2</sub> O                               | 0.02128  | -76.41073      | -0.00070 | -76.43271  |             |             |
| GVL                                            | 0.12519  | -345.57698     | 0.08391  | -345.61826 |             |             |
| OT                                             | 0.12081  | -345.55701     | 0.07452  | -345.60330 |             |             |
| MFD                                            | 0.15403  | -421.96688     | 0.10976  | -422.01115 |             |             |
|                                                |          |                |          |            |             |             |
| $LA + HCOOH + H_2 + NEt_3$                     | 0.37416  | -903.72409     | 0.23655  | -903.86170 | 0.0         | 0.0         |
|                                                |          |                |          |            |             |             |
| HCOOH                                          | 0.03342  | -189.70312     | 0.00298  | -189.73356 |             |             |
| $HCOOH + LA + H_2 + NEt_3$                     | 0.37416  | -903.72409     | 0.23655  | -903.86170 | 0.0         | 0.0         |
| U-F-G-IM1                                      | 0.16220  | -610.51861     | 0.09897  | -610.58183 |             |             |
| $U\text{-}F\text{-}G\text{-}IM1 + H_2 + NEt_3$ | 0.37587  | -903.73253     | 0.25351  | -903.85490 | -22.2       | 17.8        |
| U-F-G-TS1                                      | 0.15552  | -610.39456     | 0.09888  | -610.45120 |             |             |
| $U\text{-}F\text{-}G\text{-}TS1 + H_2 + NEt_3$ | 0.36920  | -903.60849     | 0.25341  | -903.72427 | 303.5       | 360.8       |
| U-F-G-IM2                                      | 0.16509  | -610.53180     | 0.10518  | -610.59171 |             |             |
| $U\text{-}F\text{-}G\text{-}IM2 + H_2 + NEt_3$ | 0.37877  | -903.74572     | 0.25971  | -903.86478 | -56.8       | -8.1        |
|                                                |          |                |          |            |             |             |
| U-F-M-IM1                                      | 0.162556 | -610.519321    | 0.10048  | -610.58139 |             |             |
| U-F-M-IM1 + H <sub>2</sub> + NEt <sub>3</sub>  | 0.37624  | -903.73325     | 0.25502  | -903.85447 | -24.0       | 19.0        |
| U-F-M-TS1                                      | 0.15473  | -610.37850     | 0.09746  | -610.43578 |             |             |
| $U\text{-}F\text{-}M\text{-}TS1 + H_2 + NEt_3$ | 0.36841  | -903.59243     | 0.25199  | -903.70885 | 345.7       | 401.3       |
| U-F-M-IM2                                      | 0.164444 | -610.51666     | 0.10304  | -610.57807 |             |             |
| $U\text{-}F\text{-}M\text{-}IM2 + H_2 + NEt_3$ | 0.37812  | -903.73059     | 0.25757  | -903.85114 | -17.1       | 27.7        |

**Table S8.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction of LA + HCOOH  $\rightarrow$  GVL + H<sub>2</sub>O + CO<sub>2</sub> through hydrogenation of ketone carbonyl in the presence of NEt<sub>3</sub> ligand at MO6/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                       | ZPE      | E <sub>c</sub> | $G_0$    | Gc          | E <sub>r</sub> | $G_{\rm r}$ |
|-----------------------------------------------|----------|----------------|----------|-------------|----------------|-------------|
| LA                                            | 0.12706  | -420.80704     | 0.07904  | -420.85507  |                |             |
| $H_2$                                         | 0.00981  | -1.15796       | -0.00228 | -1.17005    |                |             |
| НСООН                                         | 0.03342  | -189.70312     | 0.00298  | -189.73356  |                |             |
| NEt <sub>3</sub>                              | 0.20387  | -292.05597     | 0.15681  | -292.10303  |                |             |
| H <sub>2</sub> O                              | 0.02128  | -76.41073      | -0.00070 | -76.43271   |                |             |
| GVL                                           | 0.12519  | -345.57698     | 0.08391  | -345.61826  |                |             |
| OT                                            | 0.12081  | -345.55701     | 0.07452  | -345.60330  |                |             |
| MFD                                           | 0.15403  | -421.96688     | 0.10976  | -422.01115  |                |             |
| $[HNEt_3]^+$                                  | 0.21950  | -292.50499     | 0.17264  | -292.55185  |                |             |
| $CO_2$                                        | 0.01180  | -188.54399     | -0.01351 | -188.56930  |                |             |
| $LA + HCOOH + H_2 + NEt_3$                    | 0.37416  | -903.72409     | 0.23655  | -903.86170  | 0.0            | 0.0         |
| НСООН                                         | 0.033418 | -189.703116    | 0.002979 | -189.733555 |                |             |
| $HCOOH + LA + H_2 + NEt_3$                    | 0.374161 | -903.724086    | 0.236551 | -903.861696 | 0.0            | 0.0         |
| 1-F-N-IM1                                     | 0.24078  | -481.76171     | 0.18177  | -481.82072  |                |             |
| 1-F-N-IM1 + LA + H <sub>2</sub>               | 0.37765  | -903.72671     | 0.25853  | -903.84583  | -6.9           | 41.7        |
| 1-F-N-TS1                                     | 0.23486  | -481.76264     | 0.17707  | -481.82043  |                |             |
| 1-F-N-TS $1$ + LA + H <sub>2</sub>            | 0.37173  | -903.72764     | 0.25383  | -903.84554  | -9.3           | 42.4        |
| 1-F-N-IM2                                     | 0.24136  | -481.78477     | 0.18288  | -481.84325  |                |             |
| $N-F-G-IM2 + LA + H_2$                        | 0.378231 | -903.749777    | 0.259639 | -903.868369 | -67.4          | -17.5       |
| [N-F-G-IM3]                                   | 0.149705 | -610.075691    | 0.088829 | -610.136568 |                |             |
| $[N-F-G-IM3]^{-} + H_2 + [HNEt_3]^{+}$        | 0.379014 | -903.738641    | 0.259188 | -903.858468 | -38.2          | 8.5         |
| [N-F-G-TS2]                                   | 0.146803 | -610.031776    | 0.088081 | -610.090499 |                |             |
| $[N-F-G-TS2]^{-} + H_2 + [HNEt_3]^{+}$        | 0.376112 | -903.694726    | 0.25844  | -903.812399 | 77.1           | 129.4       |
| [N-F-G-IM4]                                   | 0.150561 | -610.050162    | 0.090403 | -610.110321 |                |             |
| $[N-F-G-IM4]^{-} + H_2 + [HNEt_3]^{+}$        | 0.37987  | -903.713112    | 0.260762 | -903.832221 | 28.8           | 77.4        |
| [N-F-G-IM5]                                   | 0.13729  | -421.50307     | 0.08926  | -421.55109  |                |             |
| $[N-F-G-IM4]^{-} + H_2 + [HNEt_3]^{+} + CO_2$ | 0.37840  | -903.71001     | 0.24611  | -903.84229  | 37.0           | 51.0        |
| N-F-G-IM6                                     | 0.35631  | -714.03415     | 0.28434  | -714.10612  |                |             |
| $N-F-G-IM6 + H_2 + CO_2$                      | 0.37791  | -903.73611     | 0.26856  | -903.84546  | -31.6          | 42.6        |
| N-F-G-TS3                                     | 0.35931  | -714.02496     | 0.29230  | -714.09197  |                |             |
| $N-F-G-TS3 + H_2 + CO_2$                      | 0.38092  | -903.72691     | 0.27652  | -903.83131  | -7.4           | 79.8        |
| N-F-G-IM7                                     | 0.36020  | -714.02917     | 0.29175  | -714.09762  |                |             |
| $N-F-G-IM7 + H_2 + CO_2$                      | 0.38180  | -903.73113     | 0.27596  | -903.83696  | -18.5          | 64.9        |
| N-F-G-TS4                                     | 0.35742  | -714.01997     | 0.28683  | -714.09056  |                |             |
| $N\text{-}F\text{-}G\text{-}TS4 + H_2 + CO_2$ | 0.37902  | -903.72193     | 0.27104  | -903.82991  | 5.7            | 83.5        |
| N-F-G-IM8                                     | 0.35766  | -714.04773     | 0.28477  | -714.12062  |                |             |
| $N\text{-}F\text{-}G\text{-}IM8 + H_2 + CO_2$ | 0.37926  | -903.74968     | 0.26898  | -903.85996  | -67.2          | 4.6         |
| GVL                                           | 0.12519  | -345.57698     | 0.08391  | -345.61826  |                |             |
| $GVL + H_2 + CO_2 + H2O + NEt_3$              | 0.37194  | -903.74564     | 0.22424  | -903.89334  | -56.6          | -83.1       |

**Table S9.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reactions of LA + HCOOH  $\rightarrow$  MFD + H<sub>2</sub>O + CO<sub>2</sub> and LA + HCOOH  $\rightarrow$  OT + CO<sub>2</sub> through carboxyl carbonyl hydrogenation in the presence of NEt<sub>3</sub> ligand at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                        | ZPE      | E <sub>c</sub> | $G_0$    | Gc          | E <sub>r</sub> | $G_{\rm r}$ |
|------------------------------------------------|----------|----------------|----------|-------------|----------------|-------------|
| LA                                             | 0.12706  | -420.80704     | 0.07904  | -420.85507  |                |             |
| $H_2$                                          | 0.00981  | -1.15796       | -0.00228 | -1.17005    |                |             |
| НСООН                                          | 0.03342  | -189.70312     | 0.00298  | -189.73356  |                |             |
| NEt <sub>3</sub>                               | 0.20387  | -292.05597     | 0.15681  | -292.10303  |                |             |
| $H_2O$                                         | 0.02128  | -76.41073      | -0.00070 | -76.43271   |                |             |
| GVL                                            | 0.12519  | -345.57698     | 0.08391  | -345.61826  |                |             |
| OT                                             | 0.12081  | -345.55701     | 0.07452  | -345.60330  |                |             |
| MFD                                            | 0.15403  | -421.96688     | 0.10976  | -422.01115  |                |             |
| $[HNEt_3]^+$                                   | 0.21950  | -292.50499     | 0.17264  | -292.55185  |                |             |
| $CO_2$                                         | 0.01180  | -188.54399     | -0.01351 | -188.56930  |                |             |
| $LA + HCOOH + H_2 + NEt_3$                     | 0.37416  | -903.72409     | 0.23655  | -903.86170  | 0.0            | 0.0         |
| НСООН                                          | 0.03342  | -189.70312     | 0.00298  | -189.73356  |                |             |
| $HCOOH + LA + H_2 + NEt_3$                     | 0.37416  | -903.72409     | 0.23655  | -903.86170  | 0.0            | 0.0         |
| 1-F-N-IM1                                      | 0.24078  | -481.76171     | 0.18177  | -481.82072  |                |             |
| $1$ -F-N-IM $1$ + LA + H $_2$                  | 0.37765  | -903.72671     | 0.25853  | -903.84583  | -6.9           | 41.7        |
| 1-F-N-TS1                                      | 0.23486  | -481.76264     | 0.17707  | -481.82043  |                |             |
| 1-F-N-TS1 + LA + H <sub>2</sub>                | 0.37173  | -903.72764     | 0.25383  | -903.84554  | -9.3           | 42.4        |
| 1-F-N-IM2                                      | 0.24136  | -481.78477     | 0.18288  | -481.84325  |                |             |
| $N-F-G-IM2 + LA + H_2$                         | 0.378231 | -903.749777    | 0.259639 | -903.868369 | -67.4          | -17.5       |
| [N-F-M-TS2]                                    | 0.14559  | -610.02588     | 0.08504  | -610.08643  |                |             |
| $[N-F-M-TS2]^{-}+H_2+[HNEt_3]^{+}$             | 0.37489  | -903.68883     | 0.25540  | -903.80833  | 92.6           | 140.1       |
| [N-F-M-IM4]                                    | 0.14896  | -610.04621     | 0.08729  | -610.10789  |                |             |
| $[N-F-M-IM4]^{-} + H_2 + [HNEt_3]^{+}$         | 0.37827  | -903.70916     | 0.25765  | -903.82979  | 39.2           | 83.8        |
| [N-F-M-IM5]                                    | 0.13611  | -421.49887     | 0.08670  | -421.54828  |                |             |
| $[N-F-M-IM5]^{-} + H_2 + [HNEt_3]^{+} + CO_2$  | 0.37722  | -903.70581     | 0.24355  | -903.83948  | 48.0           | 58.3        |
| N-F-M-IM6                                      | 0.35679  | -714.02646     | 0.28447  | -714.09878  |                |             |
| $N-F-M-IM6 + H_2 + CO_2$                       | 0.37840  | -903.72841     | 0.26869  | -903.83812  | -11.4          | 61.9        |
| N-F-M-TS3                                      | 0.35883  | -714.01769     | 0.29177  | -714.08475  |                |             |
| $N\text{-}F\text{-}M\text{-}TS3 + H_2 + CO_2$  | 0.38043  | -903.71964     | 0.27599  | -903.82409  | 11.7           | 98.7        |
| 7-F-M-IM9                                      | 0.35886  | -714.02138     | 0.28842  | -714.09181  |                |             |
| $7\text{-}F\text{-}M\text{-}IM9 + H_2 + CO_2$  | 0.38046  | -903.72333     | 0.27264  | -903.83116  | 2.0            | 80.2        |
| 7-F-M-TS4                                      | 0.35578  | -714.02324     | 0.28912  | -714.08991  |                |             |
| $7\text{-}F\text{-}M\text{-}TS4 + H_2 + CO_2$  | 0.37739  | -903.72520     | 0.27333  | -903.82925  | -2.9           | 85.2        |
| 7-F-M-IM10                                     | 0.36016  | -714.03203     | 0.29067  | -714.10152  |                |             |
| $7\text{-}F\text{-}M\text{-}IM10 + H_2 + CO_2$ | 0.38177  | -903.73399     | 0.27489  | -903.84087  | -26.0          | 54.7        |
| MFD                                            | 0.15403  | -421.96688     | 0.10976  | -422.01115  |                |             |
| $MFD + H_2 + CO_2 + NEt_3$                     | 0.37951  | -903.72480     | 0.25079  | -903.85352  | -1.9           | 21.5        |
| N-F-O-TS3                                      | 0.35422  | -714.01086     | 0.28180  | -714.08328  |                |             |
| $N\text{-}F\text{-}O\text{-}TS3 + H_2 + CO_2$  | 0.37582  | -903.71282     | 0.26602  | -903.82262  | 29.6           | 102.6       |
| N-F-O-IM7                                      | 0.35292  | -714.02726     | 0.27388  | -714.10630  |                |             |
| $N\text{-}F\text{-}O\text{-}IM7 + H_2 + CO_2$  | 0.37453  | -903.72922     | 0.25810  | -903.84564  | -13.5          | 42.2        |
| OT                                             | 0.12081  | -345.55701     | 0.07452  | -345.60330  |                |             |
| $OT + H_2 + CO_2 + H_2O + NEt_3$               | 0.36756  | -903.72567     | 0.21485  | -903.87838  | -4.1           | -43.8       |

**Table S10.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction of  ${}^{6}[Ru(PPh_3)]^{3+} + HCOO^- + LA \rightarrow {}^{6}[3-F-K-IM5]^{2+} + CO_2 + PPh_3$  through hydrogenation of ketone carbonyl at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                                                             | ZPE      | E <sub>c</sub> | $G_0$     | G <sub>c</sub> | E <sub>r</sub> | $G_{\rm r}$ |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----------|----------------|----------------|-------------|
| ${}^{6}[Ru(PPh_{3})]^{3+}$                                                                                                          | 0.27415  | -1129.92479    | 0.19644   | -1130.00251    |                |             |
| PPh <sub>3</sub>                                                                                                                    | 0.27244  | -1035.47240    | 0.20382   | -1035.54102    |                |             |
| NEt <sub>3</sub>                                                                                                                    | 0.20387  | -292.05597     | 0.15681   | -292.10303     |                |             |
| $[\text{HNEt}_3]^+$                                                                                                                 | 0.21950  | -292.50499     | 0.17264   | -292.55185     |                |             |
| PY                                                                                                                                  | 0.08809  | -248.07271     | 0.05210   | -248.10871     |                |             |
| LA                                                                                                                                  | 0.12706  | -420.80704     | 0.07904   | -420.85507     |                |             |
| НСООН                                                                                                                               | 0.03342  | -189.70312     | 0.00298   | -189.73356     |                |             |
| $H_2$                                                                                                                               | 0.00981  | -1.15796       | -0.00228  | -1.17005       |                |             |
| $CO_2$                                                                                                                              | 0.011798 | -188.543994    | -0.013507 | -188.569298    |                |             |
| $^{6} \left[ Ru(PPh_{3}) \right]^{3+} + PPh_{3} + NEt_{3} + PY + LA + HCOOH + H_{2}$                                                | 1.008843 | -3317.193988   | 0.688905  | -3317.513926   | 0.0            | 0.0         |
| HCOO <sup>-</sup>                                                                                                                   | 0.020569 | -189.264961    | -0.009333 | -189.294864    |                |             |
| $HCOO^{-} + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + LA + H_{2} + [HNEt_{3}]^{+}$                                                  | 1.011624 | -3317.204854   | 0.692416  | -3317.524064   | -28.5          | -26.6       |
| <sup>6</sup> [F-K-C-IM1] <sup>2+</sup>                                                                                              | 0.022604 | -283.723514    | -0.017665 | -283.763782    |                |             |
| ${}^{6}$ [F-K-C-IM1] ${}^{2+}$ + 2*PPh <sub>3</sub> + PY + LA + H <sub>2</sub> + [HNEt <sub>3</sub> ] ${}^{+}$                      | 1.011941 | -3317.211013   | 0.691461  | -3317.531491   | -44.7          | -46.1       |
| ${}^{6}$ [F-K-C-IM2] ${}^{2+}$                                                                                                      | 0.152587 | -704.541107    | 0.085512  | -704.608182    |                |             |
| ${}^{6}$ [F-K-C-IM2] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup>                   | 1.01486  | -3317.221565   | 0.715602  | -3317.520821   | -72.4          | -18.1       |
| ${}^{6}$ [F-K-C-TS1] $^{2+}$                                                                                                        | 0.148068 | -704.504859    | 0.083008  | -704.569918    |                |             |
| ${}^{6}$ [F-K-C-TS1] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup>                   | 1.010341 | -3317.185317   | 0.713098  | -3317.482557   | 22.8           | 82.4        |
| <sup>6</sup> [F-K-C-IM3] <sup>2+</sup>                                                                                              | 0.153525 | -704.545771    | 0.086247  | -704.613049    |                |             |
| ${}^{6}$ [F-K-C-IM3] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup>                   | 1.015798 | -3317.226229   | 0.716337  | -3317.525688   | -84.6          | -30.9       |
| <sup>6</sup> [3-F-K-IM5] <sup>2+</sup>                                                                                              | 0.14037  | -516.00242     | 0.08295   | -516.05984     |                |             |
| ${}^{6}$ [3-F-K-IM5] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub> | 1.01444  | -3317.22687    | 0.69953   | -3317.54178    | -86.3          | -73.1       |

**Table S11.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction of  ${}^{6}[Ru(PPh_3)]^{3+}$  + HCOO<sup>-</sup> + LA  $\rightarrow {}^{6}[6$ -F-O-IM5]<sup>2+</sup> + CO<sub>2</sub> + PPh<sub>3</sub> through hydrogenation of carboxyl carbonyl at MO6/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                                                             | ZPE     | E <sub>c</sub> | $G_0$    | $G_{c}$     | $E_{\rm r}$ | $G_{\rm r}$ |
|-------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------|-------------|-------------|-------------|
| <sup>6</sup> [Ru(PPh <sub>3</sub> )] <sup>3+</sup>                                                                                  | 0.27415 | -1129.92479    | 0.19644  | -1130.00251 |             |             |
| PPh <sub>3</sub>                                                                                                                    | 0.27244 | -1035.47240    | 0.20382  | -1035.54102 |             |             |
| NEt <sub>3</sub>                                                                                                                    | 0.20387 | -292.05597     | 0.15681  | -292.10303  |             |             |
| $[HNEt_3]^+$                                                                                                                        | 0.21950 | -292.50499     | 0.17264  | -292.55185  |             |             |
| PY                                                                                                                                  | 0.08809 | -248.07271     | 0.05210  | -248.10871  |             |             |
| LA                                                                                                                                  | 0.12706 | -420.80704     | 0.07904  | -420.85507  |             |             |
| НСООН                                                                                                                               | 0.03342 | -189.70312     | 0.00298  | -189.73356  |             |             |
| $H_2$                                                                                                                               | 0.00981 | -1.15796       | -0.00228 | -1.17005    |             |             |
| CO <sub>2</sub>                                                                                                                     | 0.01180 | -188.54399     | -0.01351 | -188.56930  |             |             |
| $^{6}\!\left[Ru(PPh_{3})\right]^{3+}+PPh_{3}+NEt_{3}+PY+LA+HCOOH+H_{2}$                                                             | 1.00884 | -3317.19399    | 0.68891  | -3317.51393 | 0.0         | 0.0         |
| HCOO <sup>-</sup>                                                                                                                   | 0.02057 | -189.26496     | -0.00933 | -189.29486  |             |             |
| $HCOO^{-} + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + LA + H_{2} + [HNEt_{3}]^{+}$                                                  | 1.01162 | -3317.20485    | 0.69242  | -3317.52406 | -28.5       | -26.6       |
| <sup>6</sup> [F-K-C-IM1] <sup>2+</sup>                                                                                              | 0.02260 | -283.72351     | -0.01767 | -283.76378  |             |             |
| ${}^{6}$ [F-K-C-IM1] ${}^{2+}$ + 2*PPh <sub>3</sub> + PY + LA + H <sub>2</sub> + [HNEt <sub>3</sub> ] ${}^{+}$                      | 1.01194 | -3317.21101    | 0.69146  | -3317.53149 | -44.7       | -46.1       |
| <sup>6</sup> [F-C-C-IM2] <sup>2+</sup>                                                                                              | 0.15287 | -704.54330     | 0.08816  | -704.60800  |             |             |
| ${}^{6}$ [F-C-C-IM2] ${}^{2^{+}}$ + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] ${}^{+}$                        | 1.01514 | -3317.22375    | 0.71825  | -3317.52064 | -78.1       | -17.6       |
| ${}^{6}$ [F-C-C-TS1] $^{2+}$                                                                                                        | 0.14712 | -704.49225     | 0.08052  | -704.55885  |             |             |
| ${}^{6}$ [F-C-C-TS1] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup>                   | 1.00939 | -3317.17271    | 0.71061  | -3317.47149 | 55.9        | 111.4       |
| <sup>6</sup> [F-C-C-IM3] <sup>2+</sup>                                                                                              | 0.15167 | -704.53562     | 0.08359  | -704.60370  |             |             |
| ${}^{6}$ [F-C-C-IM3] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup>                   | 1.01394 | -3317.21608    | 0.71368  | -3317.51634 | -58.0       | -6.3        |
| <sup>6</sup> [6-F-O-IM5] <sup>2+</sup>                                                                                              | 0.13940 | -515.98718     | 0.07994  | -516.04664  |             |             |
| ${}^{6}$ [6-F-O-IM5] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub> | 1.01347 | -3317.21163    | 0.69653  | -3317.52857 | -46.3       | -38.4       |

**Table S12.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction stage (i) of HCOOH + L  $\rightarrow$  HCOO<sup>-</sup> + [HL]<sup>+</sup> (L= PPh<sub>3</sub>, NEt<sub>3</sub>, and PY) at MO6/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                             | ZPE     | E <sub>c</sub> | $G_0$    | Gc          | $E_{\rm r}$ | $G_{\rm r}$ |
|-----------------------------------------------------------------------------------------------------|---------|----------------|----------|-------------|-------------|-------------|
| $^{6}[Ru(PPh_{3})]^{3+}$                                                                            | 0.27415 | -1129.92479    | 0.19644  | -1130.00251 |             |             |
| PPh <sub>3</sub>                                                                                    | 0.27244 | -1035.47240    | 0.20382  | -1035.54102 |             |             |
| $[HPPh_3]^+$                                                                                        | 0.28366 | -1035.91017    | 0.21535  | -1035.97848 |             |             |
| NEt <sub>3</sub>                                                                                    | 0.20387 | -292.05597     | 0.15681  | -292.10303  |             |             |
| $[HNEt_3]^+$                                                                                        | 0.21950 | -292.50499     | 0.17264  | -292.55185  |             |             |
| PY                                                                                                  | 0.08809 | -248.07271     | 0.05210  | -248.10871  |             |             |
| $[\mathrm{HPY}]^+$                                                                                  | 0.10172 | -248.51019     | 0.06550  | -248.54641  |             |             |
| LA                                                                                                  | 0.12706 | -420.80704     | 0.07904  | -420.85507  |             |             |
| НСООН                                                                                               | 0.03342 | -189.70312     | 0.00298  | -189.73356  |             |             |
| $H_2$                                                                                               | 0.00981 | -1.15796       | -0.00228 | -1.17005    |             |             |
| $^{6}\!\left[Ru(PPh_{3})\right]^{3+}+PPh_{3}+NEt_{3}+PY+LA+HCOOH+H_{2}$                             | 1.00884 | -3317.19399    | 0.68891  | -3317.51393 | 0.0         | 0.0         |
| НСООН                                                                                               | 0.03342 | -189.70312     | 0.00298  | -189.73356  |             |             |
| $HCOOH + {}^6 \bigl[ Ru(PPh_3) \bigr]^{3+} + PPh_3 + NEt_3 + PY + LA + H_2$                         | 1.00884 | -3317.19399    | 0.68891  | -3317.51393 | 0.0         | 0.0         |
| 1-F-P-IM1                                                                                           | 0.30780 | -1225.18671    | 0.22956  | -1225.26496 |             |             |
| $1-F-P-IM1 + {}^{6}[Ru(PPh_{3})]^{3+} + NEt_{3} + PY + LA + H_{2}$                                  | 1.01079 | -3317.20519    | 0.71167  | -3317.50431 | -29.4       | 25.3        |
| 1-F-P-TS1                                                                                           | 0.30224 | -1225.17795    | 0.22356  | -1225.25662 |             |             |
| $1-F-P-TS1 + {}^{6}[Ru(PPh_{3})]^{3+} + NEt_{3} + PY + LA + H_{2}$                                  | 1.00523 | -3317.19642    | 0.70567  | -3317.49598 | -6.4        | 47.1        |
| 1-F-P-IM2                                                                                           | 0.30540 | -1225.18435    | 0.22305  | -1225.26670 |             |             |
| $1-F-P-IM2 + {}^{6}[Ru(PPh_{3})]^{3+} + NEt_{3} + PY + LA + H_{2}$                                  | 1.00839 | -3317.20283    | 0.70516  | -3317.50606 | -23.2       | 20.7        |
| HCOO <sup>-</sup>                                                                                   | 0.02057 | -189.26496     | -0.00933 | -189.29486  |             |             |
| $HCOO^{-} + {}^{6} \bigl[ Ru(PPh_3) \bigr]^{3+} + NEt_3 + PY + LA + H_2 + \bigl[ HPPh_3 \bigr]^{+}$ | 1.00722 | -3317.19361    | 0.68813  | -3317.51270 | 1.0         | 3.2         |
| 1-F-N-IM1                                                                                           | 0.24078 | -481.76171     | 0.18177  | -481.82072  |             |             |
| $1-F-N-IM1 + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + LA + H_{2}$                                  | 1.01233 | -3317.19662    | 0.71088  | -3317.49806 | -6.9        | 41.7        |
| 1-F-N-TS1                                                                                           | 0.23486 | -481.76264     | 0.17707  | -481.82043  |             |             |
| $1-F-N-TS1 + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + LA + H_{2}$                                  | 1.00641 | -3317.19754    | 0.70618  | -3317.49777 | -9.3        | 42.4        |
| 1-F-N-IM2                                                                                           | 0.24136 | -481.78477     | 0.18288  | -481.84325  |             |             |
| $1-F-N-IM2 + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + LA + H_{2}$                                  | 1.01291 | -3317.21968    | 0.71199  | -3317.52060 | -67.4       | -17.5       |
| HCOO <sup>-</sup>                                                                                   | 0.02057 | -189.26496     | -0.00933 | -189.29486  |             |             |
| $HCOO^{-} + {}^{6} [Ru(PPh_{3})]^{3+} + PPh_{3} + PY + LA + H_{2} + [HNEt_{3}]^{+}$                 | 1.01162 | -3317.20485    | 0.69242  | -3317.52406 | -28.5       | -26.6       |
| 1-F-Y-IM1                                                                                           | 0.12248 | -437.78748     | 0.07183  | -437.83813  |             |             |
| $1-F-Y-IM1 + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + NEt_{3} + LA + H_{2}$                             | 1.00981 | -3317.20565    | 0.70566  | -3317.50979 | -30.6       | 10.9        |
| 1-F-Y-TS1                                                                                           | 0.11869 | -437.78861     | 0.07018  | -437.83712  |             |             |
| $1-F-Y-TS1 + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + NEt_{3} + LA + H_{2}$                             | 1.00602 | -3317.20677    | 0.70401  | -3317.50878 | -33.6       | 13.5        |
| 1-F-Y-IM2                                                                                           | 0.12282 | -437.78894     | 0.07153  | -437.84023  |             |             |
| $1-F-Y-IM2 + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + NEt_{3} + LA + H_{2}$                             | 1.01015 | -3317.20711    | 0.70536  | -3317.51190 | -34.4       | 5.3         |
| HCOO <sup>-</sup>                                                                                   | 0.02057 | -189.26496     | -0.00933 | -189.29486  |             |             |
| $HCOO^{-} + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + NEt_{3} + LA + H_{2} + [HPY]^{+}$                  | 1.00962 | -3317.19331    | 0.68999  | -3317.51294 | 1.8         | 2.6         |

**Table S13.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, Sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction stage (ii) of HCOO<sup>-</sup> +  ${}^{6}[Ru(PPh_3)]^{3+} \rightarrow {}^{6}[RuH]^{2+} + PPh_3 + CO_2$  at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                                                                      | ZPE     | E <sub>c</sub> | $G_0$    | $G_{c}$     | $E_{\rm r}$ | $G_{\rm r}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------|-------------|-------------|-------------|
| ${}^{6}[Ru(PPh_{3})]^{3+}$                                                                                                                   | 0.27415 | -1129.92479    | 0.19644  | -1130.00251 |             |             |
| PPh <sub>3</sub>                                                                                                                             | 0.27244 | -1035.47240    | 0.20382  | -1035.54102 |             |             |
| NEt <sub>3</sub>                                                                                                                             | 0.20387 | -292.05597     | 0.15681  | -292.10303  |             |             |
| $[\text{HNEt}_3]^+$                                                                                                                          | 0.21950 | -292.50499     | 0.17264  | -292.55185  |             |             |
| РҮ                                                                                                                                           | 0.08809 | -248.07271     | 0.05210  | -248.10871  |             |             |
| LA                                                                                                                                           | 0.12706 | -420.80704     | 0.07904  | -420.85507  |             |             |
| НСООН                                                                                                                                        | 0.03342 | -189.70312     | 0.00298  | -189.73356  |             |             |
| $H_2$                                                                                                                                        | 0.00981 | -1.15796       | -0.00228 | -1.17005    |             |             |
| CO <sub>2</sub>                                                                                                                              | 0.01180 | -188.54399     | -0.01351 | -188.56930  |             |             |
| $^{6} \left[ \text{Ru}(\text{PPh}_{3}) \right]^{3+} + \text{PPh}_{3} + \text{NEt}_{3} + \text{PY} + \text{LA} + \text{HCOOH} + \text{H}_{2}$ | 1.00884 | -3317.19399    | 0.68891  | -3317.51393 | 0.0         | 0.0         |
| HCOO <sup>-</sup>                                                                                                                            | 0.02057 | -189.26496     | -0.00933 | -189.29486  |             |             |
| $HCOO^{-} + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + LA + H_{2} + [HNEt_{3}]^{+}$                                                           | 1.01162 | -3317.20485    | 0.69242  | -3317.52406 | -28.5       | -26.6       |
| <sup>6</sup> [2-F-S-IM1] <sup>2+</sup>                                                                                                       | 0.02222 | -283.72747     | -0.01894 | -283.76864  |             |             |
| ${}^{6}$ [2-F-S-IM1] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + LA + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup>                       | 1.01156 | -3317.21497    | 0.69018  | -3317.53635 | -55.1       | -58.9       |
| <sup>6</sup> [2-F-S-TS1] <sup>2+</sup>                                                                                                       | 0.01698 | -283.69093     | -0.02481 | -283.73272  |             |             |
| ${}^{6}$ [2-F-S-TS1] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + LA + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup>                       | 1.00632 | -3317.17843    | 0.68431  | -3317.50043 | 40.9        | 35.4        |
| <sup>6</sup> [2-F-S-IM2] <sup>2+</sup>                                                                                                       | 0.01866 | -283.70367     | -0.02233 | -283.74466  |             |             |
| $^{6}$ [2-F-S-IM2] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + LA + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup>                         | 1.00800 | -3317.19117    | 0.68680  | -3317.51237 | 7.4         | 4.1         |
| $^{6}$ [RuH] $^{2+}$                                                                                                                         | 0.00420 | -95.16229      | -0.02229 | -95.18878   |             |             |
| ${}^{6}$ [RuH] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + LA + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>           | 1.00533 | -3317.19378    | 0.67333  | -3317.52579 | 0.5         | -31.1       |

**Table S14.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction stage (**ii**) of  ${}^{6}[RuH]^{2+} + LA \rightarrow {}^{6}[RuOH]^{2+} + GVL$  through the hydrogenation of ketone carbonyl at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                                                              | ZPE      | E <sub>c</sub> | $G_0$    | G <sub>c</sub>           | E <sub>r</sub> | $G_{\rm r}$ |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------|--------------------------|----------------|-------------|
| $6[Ru(PPh_3)]^{3+}$                                                                                                                  | 0.27415  | -1129.92479    | 0.19644  | -1130.00251              |                |             |
| PPh <sub>3</sub>                                                                                                                     | 0.27244  | -1035.47240    | 0.20382  | -1035.54102              |                |             |
| NEt <sub>3</sub>                                                                                                                     | 0.20387  | -292.05597     | 0.15681  | -292.10303               |                |             |
| $[\text{HNEt}_3]^+$                                                                                                                  | 0.21950  | -292.50499     | 0.17264  | -292.55185               |                |             |
| PY                                                                                                                                   | 0.08809  | -248.07271     | 0.05210  | -248.10871               |                |             |
| LA                                                                                                                                   | 0.12706  | -420.80704     | 0.07904  | -420.85507               |                |             |
| НСООН                                                                                                                                | 0.03342  | -189.70312     | 0.00298  | -189.73356               |                |             |
| $H_2$                                                                                                                                | 0.00981  | -1.15796       | -0.00228 | -1.17005                 |                |             |
| CO <sub>2</sub>                                                                                                                      | 0.01180  | -188.54399     | -0.01351 | -188.56930               |                |             |
| GVL                                                                                                                                  | 0.12519  | -345.57698     | 0.08391  | -345.61826               |                |             |
| $^{6} {\left[ {Ru(PPh_3)} \right]^{3 + } + PPh_3 + NEt_3 + PY + LA + HCOOH + H_2 } \\$                                               | 1.00884  | -3317.19399    | 0.68891  | -3317.51393              | 0.0            | 0.0         |
| ${}^{6}[RuH]^{2+}$                                                                                                                   | 0.00420  | -95.16229      | -0.02229 | -95.18878                |                |             |
| ${}^{6}\!\left[RuH\right]^{2+} + 2*PPh_{3} + PY + LA + H_{2} + \left[HNEt_{3}\right]^{+} + CO_{2}$                                   | 1.00533  | -3317.19378    | 0.67333  | -3317.52579              | 0.5            | -31.1       |
| <sup>6</sup> [3-F-K-IM4] <sup>2+</sup>                                                                                               | 0.13541  | -515.96925     | 0.07797  | -516.02670               |                |             |
| ${}^{6}$ [3-F-K-IM4] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>  | 1.00948  | -3317.19371    | 0.69455  | -3317.50864              | 0.7            | 13.9        |
| <sup>6</sup> [3-F-K-TS2] <sup>2+</sup>                                                                                               | 0.13570  | -515,95439     | 0.07955  | -516.01053               |                |             |
| ${}^{6}$ [2, F-K-TS2] <sup>2+</sup> + 2*PPb <sub>2</sub> + PV + H <sub>2</sub> + [HNFt <sub>2</sub> ] <sup>+</sup> + CO <sub>2</sub> | 1.00977  | -3317,17884    | 0.69613  | -3317 49247              | 30.8           | 563         |
| ${}^{6}$ [2 E V IM(5) <sup>2+</sup>                                                                                                  | 0 14037  | -516 00242     | 0.08295  | -516 05984               | 57.0           | 50.5        |
| $[5-F-K-IIVIJ]^{6}$                                                                                                                  | 1 01444  | -3317 22687    | 0.60053  | -3317 5/178              | 96.7           | 72.1        |
| $[3-F-K-INI3] + 2^{-F}FI3 + FI + H_2 + [HINEI3] + CO_2$                                                                              | 0.14096  | 516 00275      | 0.09755  | 516 05940                | -80.5          | -/3.1       |
| [3-F-K-IM0]                                                                                                                          | 1.014080 | -310.00373     | 0.08021  | -510.05640               | 00.0           | (0.2        |
| $[3-F-K-IM6] + 2*PPh_3 + PY + H_2 + [HNEt_3] + CO_2$                                                                                 | 0.14010  | -5517.22621    | 0.70280  | -5517.54055              | -89.8          | -69.3       |
| [3-F-K-TS3]                                                                                                                          | 0.14018  | -515.9/845     | 0.08921  | -516.02941               |                |             |
| $[3-F-K-TS3]^{-1} + 2*PPh_3 + PY + H_2 + [HNEt_3]^{-1} + CO_2$                                                                       | 1.01425  | -3317.20290    | 0.70579  | -3317.51135              | -23.4          | 6.8         |
| <sup>o</sup> [3-F-K-IM7] <sup>2+</sup>                                                                                               | 0.14233  | -515.98966     | 0.08947  | -516.04252               |                |             |
| ${}^{6}$ [3-F-K-IM7] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>  | 1.01641  | -3317.21411    | 0.70605  | -3317.52446              | -52.8          | -27.6       |
| <sup>6</sup> [3-F-K-IM8] <sup>2+</sup>                                                                                               | 0.14165  | -515.98835     | 0.08862  | -516.04138               |                |             |
| ${}^{6}$ [3-F-K-IM8] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>  | 1.01572  | -3317.21280    | 0.70521  | -3317.52332              | -49.4          | -24.7       |
| <sup>6</sup> [3-F-K-TS4] <sup>2+</sup>                                                                                               | 0.13977  | -515.97382     | 0.08768  | -516.02591               |                |             |
| ${}^{6}$ [3-F-K-TS4] ${}^{2+}$ + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] ${}^{+}$ + CO <sub>2</sub>          | 1.01384  | -3317.19828    | 0.70427  | -3317.50785              | -11.3          | 16.0        |
| <sup>6</sup> [3-F-K-IM9] <sup>2+</sup>                                                                                               | 0.13998  | -516.00549     | 0.08506  | -516.06041               |                |             |
| ${}^{6}$ [3-F-K-IM9] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>  | 1.01405  | -3317.22994    | 0.70164  | -3317.54235              | -94.4          | -74.6       |
| <sup>6</sup> [RuOH] <sup>2+</sup>                                                                                                    | 0.01137  | -170.42314     | -0.02230 | -170.45681               |                |             |
| ${}^{6}$ [RuOH] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub> + GVL | 1.01063  | -3317.22457    | 0.67819  | -3317.55701              | -80.3          | -113.1      |
| <sup>6</sup> [3_F_C_IM/I <sup>2+</sup>                                                                                               | 0 13780  | -515 06072     | 0.08001  | -516 02750               |                |             |
| $[5^{-1} - 5^{-1}]^{6}$                                                                                                              | 1 01197  | -313.70772     | 0.00001  | -3317 500/2              | -0.5           | 11 9        |
| $[5^{-1} - C^{-1} M + T] = 2 + 1 + 13 + 1 + 142 + [11 M \pm 03] + CO_2$                                                              | 0.12550  | -3317.17417    | 0.02000  | -5517.50745<br>516.00597 | -0.5           | 11.0        |
| [3-F-U-152]                                                                                                                          | 0.13559  | -313.9311/     | 0.08090  | -516.0058/               | 40.0           | (0.1        |
| $[3-F-C-TS2]^{-} + 2*PPh_3 + PY + H_2 + [HNEt_3]^{+} + CO_2$                                                                         | 1.00966  | -3317.17563    | 0.69748  | -3317.48780              | 48.2           | 68.6        |

**Table S15.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, Sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction stage (iv) of  ${}^{6}[RuOH]^{2+} + CO_2 + PPh_3 \rightarrow {}^{6}[Ru(PPh_3)]^{3+} + HCO_3^{-}$  at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                                                              | ZPE     | E <sub>c</sub> | $G_0$    | $G_{c}$     | $E_{\rm r}$ | $G_{\rm r}$ |
|--------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------|-------------|-------------|-------------|
| ${}^{6}[Ru(PPh_{3})]^{3+}$                                                                                                           | 0.27415 | -1129.92479    | 0.19644  | -1130.00251 |             |             |
| PPh <sub>3</sub>                                                                                                                     | 0.27244 | -1035.47240    | 0.20382  | -1035.54102 |             |             |
| NEt <sub>3</sub>                                                                                                                     | 0.20387 | -292.05597     | 0.15681  | -292.10303  |             |             |
| $[\text{HNEt}_3]^+$                                                                                                                  | 0.21950 | -292.50499     | 0.17264  | -292.55185  |             |             |
| PY                                                                                                                                   | 0.08809 | -248.07271     | 0.05210  | -248.10871  |             |             |
| LA                                                                                                                                   | 0.12706 | -420.80704     | 0.07904  | -420.85507  |             |             |
| НСООН                                                                                                                                | 0.03342 | -189.70312     | 0.00298  | -189.73356  |             |             |
| $H_2$                                                                                                                                | 0.00981 | -1.15796       | -0.00228 | -1.17005    |             |             |
| $CO_2$                                                                                                                               | 0.01180 | -188.54399     | -0.01351 | -188.56930  |             |             |
| GVL                                                                                                                                  | 0.12519 | -345.57698     | 0.08391  | -345.61826  |             |             |
| OH-                                                                                                                                  | 0.00893 | -75.92761      | -0.00988 | -75.94642   |             |             |
| $^{6} [Ru(PPh_{3})]^{3+} + PPh_{3} + NEt_{3} + PY + LA + HCOOH + H_{2}$                                                              | 1.00884 | -3317.19399    | 0.68891  | -3317.51393 | 0.0         | 0.0         |
| 6[RuOH]2+                                                                                                                            | 0.01137 | -170.42314     | -0.02230 | -170.45681  |             |             |
| ${}^{6}$ [RuOH] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub> + GVL | 1.01063 | -3317.22457    | 0.67819  | -3317.55701 | -80.3       | -113.1      |
| OH_                                                                                                                                  | 0.00893 | -75.92761      | -0.00988 | -75.94642   |             |             |
| $^{6}\!\left[Ru(PPh_{3})\right]^{3+}+PPh_{3}+PY+H_{2}+\left[HNEt_{3}\right]^{+}+CO_{2}+GVL$                                          | 1.00991 | -3317.18144    | 0.68323  | -3317.50811 | 33.0        | 15.3        |
| <sup>6</sup> [4-F-C-IM11] <sup>2+</sup>                                                                                              | 0.02502 | -358.96581     | -0.02205 | -359.01287  |             |             |
| ${}^{6}$ [4-F-C-IM11] <sup>2+</sup> + 2*PPh <sub>2</sub> + PY + H <sub>2</sub> + [HNFt <sub>2</sub> ] <sup>+</sup> + GVI             | 1.01248 | -3317.22325    | 0.69195  | -3317.54377 | -76.8       | -78 3       |
| <sup>6</sup> [4-F-C-TS5] <sup>2+</sup>                                                                                               | 0.02497 | -358.95103     | -0.01972 | -358.99572  | 70.0        | 70.5        |
| $^{6}$ [4-F-C-TS5] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + GVL                | 1.01243 | -3317.20847    | 0.69428  | -3317.52662 | -38.0       | -33.3       |
| <sup>6</sup> [4-F-C-IM12] <sup>2+</sup>                                                                                              | 0.02890 | -358.96785     | -0.01359 | -359.01034  |             |             |
| $^{6}$ [4-F-C-IM12] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + GVL               | 1.01636 | -3317.22529    | 0.70041  | -3317.54124 | -82.2       | -71.7       |
| HCO <sub>3</sub>                                                                                                                     | 0.02645 | -264.51134     | -0.00655 | -264.54433  |             |             |
| $HCO_{3}^{-} + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + H_{2} + [HNEt_{3}]^{+} + GVL$                                               | 1.01562 | -3317.22117    | 0.70007  | -3317.53672 | -71.4       | -59.8       |

**Table S16.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, Sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction stage (v) of HCO<sub>3</sub><sup>-</sup> + [HL]<sup>+</sup>  $\rightarrow$  L + CO<sub>2</sub> + H<sub>2</sub>O (L = PPh<sub>3</sub>, NEt<sub>3</sub>, and PY) at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                                                                                  | ZPE     | E <sub>c</sub> | $G_0$    | G <sub>c</sub> | E <sub>r</sub> | Gr    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------|----------------|----------------|-------|
| <sup>6</sup> [Ru(PPh <sub>2</sub> )] <sup>3+</sup>                                                                                                       | 0.27415 | -1129.92479    | 0.19644  | -1130.00251    |                |       |
| PPh <sub>3</sub>                                                                                                                                         | 0.27244 | -1035.47240    | 0.20382  | -1035.54102    |                |       |
| $\left[\mathrm{HPPh}_{3}\right]^{+}$                                                                                                                     | 0.28366 | -1035.91017    | 0.21535  | -1035.97848    |                |       |
| NEt <sub>3</sub>                                                                                                                                         | 0.20387 | -292.05597     | 0.15681  | -292.10303     |                |       |
| $[HNEt_3]^+$                                                                                                                                             | 0.21950 | -292.50499     | 0.17264  | -292.55185     |                |       |
| PY                                                                                                                                                       | 0.08809 | -248.07271     | 0.05210  | -248.10871     |                |       |
| $\left[\mathrm{HPY} ight]^{+}$                                                                                                                           | 0.10172 | -248.51019     | 0.06550  | -248.54641     |                |       |
| LA                                                                                                                                                       | 0.12706 | -420.80704     | 0.07904  | -420.85507     |                |       |
| НСООН                                                                                                                                                    | 0.03342 | -189.70312     | 0.00298  | -189.73356     |                |       |
| $H_2$                                                                                                                                                    | 0.00981 | -1.15796       | -0.00228 | -1.17005       |                |       |
| $CO_2$                                                                                                                                                   | 0.01180 | -188.54399     | -0.01351 | -188.56930     |                |       |
| GVL                                                                                                                                                      | 0.12519 | -345.57698     | 0.08391  | -345.61826     |                |       |
| $H_2O$                                                                                                                                                   | 0.02128 | -76.41073      | -0.00070 | -76.43271      |                |       |
| $^{6}\!\left[\text{Ru}(\text{PPh}_{3})\right]^{3+}+\text{PPh}_{3}+\text{NEt}_{3}+\text{PY}+\text{LA}+\text{HCOOH}+\text{H}_{2}$                          | 1.00884 | -3317.19399    | 0.68891  | -3317.51393    | 0.0            | 0.0   |
| HCO <sub>3</sub>                                                                                                                                         | 0.02645 | -264.51134     | -0.00655 | -264.54433     |                |       |
| $HCO_{3}^{-} + {}^{6}[Ru(PPh_{3})]^{3+} + [HPPh_{3}]^{+} + PY + H_{2} + NEt_{3} + GVL$                                                                   | 1.01122 | -3317.20993    | 0.69579  | -3317.52535    | -41.8          | -30.0 |
| 5-B-P-IM1                                                                                                                                                | 0.31186 | -1300.43267    | 0.22889  | -1300.51563    |                |       |
| 5-B-P-IM1 + ${}^{6}$ [Ru(PPh <sub>3</sub> )] <sup>3+</sup> + PY + H <sub>2</sub> + NEt <sub>3</sub> + GVL                                                | 1.01297 | -3317.22108    | 0.71587  | -3317.51818    | -71.1          | -11.1 |
| 5-B-P-TS1                                                                                                                                                | 0.30690 | -1300.40860    | 0.22524  | -1300.49026    |                |       |
| 5-B-P-TS1 + ${}^{6}$ [Ru(PPh <sub>3</sub> )] <sup>3+</sup> + PY + H <sub>2</sub> + NEt <sub>3</sub> + GVL                                                | 1.00802 | -3317.19701    | 0.71222  | -3317.49281    | -7.9           | 55.5  |
| 5-B-P-IM2                                                                                                                                                | 0.31032 | -1300.44082    | 0.22668  | -1300.52446    |                |       |
| $5-B-P-IM2 + {}^{6}[Ru(PPh_{3})]^{3+} + PY + H_{2} + NEt_{3} + GVL$                                                                                      | 1.01143 | -3317.22924    | 0.71367  | -3317.52700    | -92.5          | -34.3 |
| HCO <sub>3</sub>                                                                                                                                         | 0.02645 | -264.51134     | -0.00655 | -264.54433     |                |       |
| $HCO_{3}^{-} + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + H_{2} + [HNEt_{3}]^{+} + GVL$                                                                   | 1.01562 | -3317.22117    | 0.70007  | -3317.53672    | -71.4          | -59.8 |
| 5-B-N-IM1                                                                                                                                                | 0.24732 | -557.03079     | 0.18682  | -557.09129     |                |       |
| 5-B-N-IM1 + ${}^{6}$ [Ru(PPh <sub>3</sub> )] <sup>3+</sup> + PPh <sub>3</sub> + PY + H <sub>2</sub> + GVL                                                | 1.01700 | -3317.23563    | 0.72080  | -3317.53183    | -109.3         | -47.0 |
| 5-B-N-TS1                                                                                                                                                | 0.24103 | -557.00196     | 0.18183  | -557.06116     |                |       |
| 5-B-N-TS1 + ${}^{6}$ [Ru(PPh <sub>3</sub> )] <sup>3+</sup> + PPh <sub>3</sub> + PY + H <sub>2</sub> + GVL                                                | 1.01070 | -3317.20681    | 0.71582  | -3317.50170    | -33.7          | 32.1  |
| 5-B-N-IM2                                                                                                                                                | 0.24340 | -557.01940     | 0.18153  | -557.08127     |                |       |
| $5\text{-}B\text{-}N\text{-}IM2 + \ \ ^{6} \big[ Ru(PPh_{3}) \big]^{3+} + PPh_{3} + PY + H_{2} + GVL$                                                    | 1.01307 | -3317.22425    | 0.71551  | -3317.52181    | -79.4          | -20.7 |
| HCO <sub>3</sub> <sup>-</sup>                                                                                                                            | 0.02645 | -264.51134     | -0.00655 | -264.54433     |                |       |
| $HCO_{3}^{-} + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + [HPY]^{+} + H_{2} + NEt_{3} + GVL$                                                                   | 1.01362 | -3317.20963    | 0.69765  | -3317.52560    | -41.1          | -30.6 |
| 5-B-Y-IMI                                                                                                                                                | 0.12935 | -513.02994     | 0.0/59/  | -513.08332     | (2.1           |       |
| $5-B-Y-IMI + [Ru(PPh_3)] + PPh_3 + H_2 + NEt_3 + GVL$                                                                                                    | 1.01481 | -331/.21804    | 0./146/  | -331/.51818    | -63.1          | -11.1 |
| 5-B-Y-ISI                                                                                                                                                | 0.12432 | -513.01262     | 0.0/180  | -513.06514     |                |       |
| $5-B-Y-1S1 + [Ru(PPh_3)] + PPh_3 + H_2 + NEt_3 + GVL$                                                                                                    | 1.00977 | -3317.20072    | 0.71050  | -3317.49999    | -17.7          | 36.6  |
| 5 - B - Y - IMZ                                                                                                                                          | 0.12575 | -515.05516     | 0.066/1  | -513.09221     | 71 (           | 24.5  |
| $5 \cdot \mathbf{B} \cdot \mathbf{Y} \cdot \mathbf{IM2} + [\mathbf{Ku}(\mathbf{PPn}_3)] + \mathbf{PPn}_3 + \mathbf{H}_2 + \mathbf{NEt}_3 + \mathbf{GVL}$ | 1.01120 | -3317.22127    | 0./0541  | -331/.52/07    | -/1.6          | -34.5 |
| CO <sub>2</sub>                                                                                                                                          | 0.01180 | -188.54399     | -0.01351 | -188.56930     |                |       |
| $CO_2 + {}^6[Ru(PPh_3)]^{3+} + PPh_3 + PY + NEt_3 + H_2 + GVL + H_2O$                                                                                    | 1.00663 | -3317.21554    | 0.67659  | -3317.54557    | -56.6          | -83.1 |

**Table S17.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, Sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction stage (vi) of <sup>6</sup>[RuH]<sup>2+</sup> + LA  $\rightarrow$  <sup>6</sup>[RuOH]<sup>2+</sup> + OT through the hydrogenation of carboxyl carbonyl at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                                                                                            | ZPE     | E <sub>c</sub> | $G_0$    | $G_{c}$     | $E_{\rm r}$ | $G_{\rm r}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------|-------------|-------------|-------------|
| $^{6}[Ru(PPh_{3})]^{3+}$                                                                                                                                           | 0.27415 | -1129.92479    | 0.19644  | -1130.00251 |             |             |
| PPh <sub>3</sub>                                                                                                                                                   | 0.27244 | -1035.47240    | 0.20382  | -1035.54102 |             |             |
| $\left[\mathrm{HPPh}_3\right]^+$                                                                                                                                   | 0.28366 | -1035.91017    | 0.21535  | -1035.97848 |             |             |
| $NEt_3$                                                                                                                                                            | 0.20387 | -292.05597     | 0.15681  | -292.10303  |             |             |
| $[HNEt_3]^+$                                                                                                                                                       | 0.21950 | -292.50499     | 0.17264  | -292.55185  |             |             |
| PY                                                                                                                                                                 | 0.08809 | -248.07271     | 0.05210  | -248.10871  |             |             |
| $[HPY]^+$                                                                                                                                                          | 0.10172 | -248.51019     | 0.06550  | -248.54641  |             |             |
| LA                                                                                                                                                                 | 0.12706 | -420.80704     | 0.07904  | -420.85507  |             |             |
| НСООН                                                                                                                                                              | 0.03342 | -189.70312     | 0.00298  | -189.73356  |             |             |
| $H_2$                                                                                                                                                              | 0.00981 | -1.15796       | -0.00228 | -1.17005    |             |             |
| $CO_2$                                                                                                                                                             | 0.01180 | -188.54399     | -0.01351 | -188.56930  |             |             |
| OT                                                                                                                                                                 | 0.12081 | -345.55701     | 0.07452  | -345.60330  |             |             |
| $^{6}\!\left[\text{Ru}(\text{PPh}_{3})\right]^{3+}+\text{PPh}_{3}+\text{NEt}_{3}+\text{PY}+\text{LA}+\text{HCOOH}+\text{H}_{2}$                                    | 1.00884 | -3317.19399    | 0.68891  | -3317.51393 | 0.0         | 0.0         |
| $^{6}$ [RuH] <sup>2+</sup>                                                                                                                                         | 0.00420 | -95.16229      | -0.02229 | -95.18878   |             |             |
| ${}^{6}$ [RuH] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + LA + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>                                 | 1.00533 | -3317.19378    | 0.67333  | -3317.52579 | 0.5         | -31.1       |
| <sup>6</sup> [3-F-C-IM4] <sup>2+</sup>                                                                                                                             | 0.13780 | -515.96972     | 0.08001  | -516.02750  |             |             |
| ${}^{6}$ [3-F-C-IM4] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>                                | 1.01187 | -3317.19417    | 0.69660  | -3317.50943 | -0.5        | 11.8        |
| <sup>6</sup> [6-F-O-TS2] <sup>2+</sup>                                                                                                                             | 0.13485 | -515.94716     | 0.07718  | -516.00483  |             |             |
| ${}^{6}$ [6-F-O-TS2] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>                                | 1.00893 | -3317.17161    | 0.69376  | -3317.48677 | 58.8        | 71.3        |
| <sup>6</sup> [6-F-O-IM5] <sup>2+</sup>                                                                                                                             | 0.13940 | -515.98718     | 0.07994  | -516.04664  |             |             |
| ${}^{6}$ [6-F-O-IM5] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>                                | 1.01347 | -3317.21163    | 0.69653  | -3317.52857 | -46.3       | -38.4       |
| <sup>6</sup> [6-F-O-TS3] <sup>2+</sup>                                                                                                                             | 0.13572 | -515.96212     | 0.07863  | -516.01920  |             |             |
| ${}^{6}$ [6-F-O-TS3] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>                                | 1.00979 | -3317.18657    | 0.69522  | -3317.50114 | 19.5        | 33.6        |
| <sup>6</sup> [6-F-O-IM6] <sup>2+</sup>                                                                                                                             | 0.13497 | -515.98151     | 0.07362  | -516.04285  |             |             |
| ${}^{6}$ [6-F-O-IM6] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub>                                | 1.00904 | -3317.20596    | 0.69020  | -3317.52479 | -31.4       | -28.5       |
| ${}^{6}$ [RuOH] ${}^{2+}$                                                                                                                                          | 0.01137 | -170.42314     | -0.02230 | -170.45681  |             |             |
| ${}^{6}\!{{\left[ {{\operatorname{RuOH}} \right]}^{2+} + 2*PP{h_3} + PY + {H_2} + {{\left[ {\operatorname{HNEt}}_{3} \right]}^{+}} + {\operatorname{CO}}_2 + OT}}$ | 1.00625 | -3317.20460    | 0.66880  | -3317.54205 | -27.9       | -73.8       |

**Table S18.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, Sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction stage (vii) of  ${}^6[RuH]^{2+}$  + LA + [HNEt<sub>3</sub>]<sup>+</sup> + PPh<sub>3</sub>  $\rightarrow {}^6[Ru(PPh_3)]^{3+}$  + NEt<sub>3</sub> + MFD through the hydrogenation of carboxyl carbonyl at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                                                             | ZPE     | E <sub>c</sub> | $G_0$    | $G_{c}$     | E <sub>r</sub> | $G_{\rm r}$ |
|-------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------|-------------|----------------|-------------|
| <sup>6</sup> [Ru(PPh <sub>3</sub> )] <sup>3+</sup>                                                                                  | 0.27415 | -1129.92479    | 0.19644  | -1130.00251 |                |             |
| PPh <sub>3</sub>                                                                                                                    | 0.27244 | -1035.47240    | 0.20382  | -1035.54102 |                |             |
| $\left[\mathrm{HPPh}_3 ight]^+$                                                                                                     | 0.28366 | -1035.91017    | 0.21535  | -1035.97848 |                |             |
| NEt <sub>3</sub>                                                                                                                    | 0.20387 | -292.05597     | 0.15681  | -292.10303  |                |             |
| $[\text{HNEt}_3]^+$                                                                                                                 | 0.21950 | -292.50499     | 0.17264  | -292.55185  |                |             |
| PY                                                                                                                                  | 0.08809 | -248.07271     | 0.05210  | -248.10871  |                |             |
| $[HPY]^+$                                                                                                                           | 0.10172 | -248.51019     | 0.06550  | -248.54641  |                |             |
| LA                                                                                                                                  | 0.12706 | -420.80704     | 0.07904  | -420.85507  |                |             |
| НСООН                                                                                                                               | 0.03342 | -189.70312     | 0.00298  | -189.73356  |                |             |
| $H_2$                                                                                                                               | 0.00981 | -1.15796       | -0.00228 | -1.17005    |                |             |
| CO <sub>2</sub>                                                                                                                     | 0.01180 | -188.54399     | -0.01351 | -188.56930  |                |             |
| MFD                                                                                                                                 | 0.15379 | -421.96692     | 0.10937  | -422.01134  |                |             |
| ${}^{6} {\left[ {Ru(PPh_3 )} \right]^{3 + } + PPh_3 + NEt_3 + PY + LA + HCOOH + H_2 } \\$                                           | 1.00884 | -3317.19399    | 0.68891  | -3317.51393 | 0.0            | 0.0         |
| <sup>6</sup> [RuH] <sup>2+</sup>                                                                                                    | 0.00420 | -95.16229      | -0.02229 | -95.18878   |                |             |
| ${}^{6}[\text{RuH]}^{2+} + 2*\text{PPh}_3 + \text{PY} + \text{LA} + \text{H}_2 + [\text{HNEt}_3]^{+} + \text{CO}_2$                 | 1.00533 | -3317.19378    | 0.67333  | -3317.52579 | 0.5            | -31.1       |
| <sup>6</sup> [3-F-C-IM4] <sup>2+</sup>                                                                                              | 0.13780 | -515.96972     | 0.08001  | -516.02750  |                |             |
| ${}^{6}$ [3-F-C-IM4] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub> | 1.01187 | -3317.19417    | 0.69660  | -3317.50943 | -0.5           | 11.8        |
| <sup>6</sup> [6-F-O-TS2] <sup>2+</sup>                                                                                              | 0.13485 | -515.94716     | 0.07718  | -516.00483  |                |             |
| ${}^{6}$ [6-F-O-TS2] <sup>2+</sup> + 2*PPh <sub>2</sub> + PY + H <sub>2</sub> + [HNFt <sub>2</sub> ] <sup>+</sup> + CO <sub>2</sub> | 1.00893 | -3317.17161    | 0.69376  | -3317.48677 | 58.8           | 71.3        |
| <sup>6</sup> [6-F-O-IM5] <sup>2+</sup>                                                                                              | 0.13940 | -515.98718     | 0.07994  | -516.04664  |                | ,           |
| ${}^{6}$ [6-F-O-IM5] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub> | 1.01347 | -3317.21163    | 0.69653  | -3317.52857 | -46.3          | -38.4       |
| <sup>6</sup> [7-F-M-IM6] <sup>2+</sup>                                                                                              | 0.14032 | -515.98897     | 0.08483  | -516.04445  |                |             |
| ${}^{6}$ [7-F-M-IM6] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub> | 1.01439 | -3317.21342    | 0.70141  | -3317.52639 | -51.0          | -32.7       |
| <sup>6</sup> [7-F-M-TS3] <sup>2+</sup>                                                                                              | 0.13959 | -515.97139     | 0.08624  | -516.02474  |                |             |
| ${}^{6}$ [7-F-M-TS3] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub> | 1.01366 | -3317.19584    | 0.70282  | -3317.50668 | -4.9           | 19.0        |
| <sup>6</sup> [7-F-M-IM7] <sup>2+</sup>                                                                                              | 0.14262 | -515.98518     | 0.08943  | -516.03837  |                |             |
| ${}^{6}$ [7-F-M-IM7] <sup>2+</sup> + 2*PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] <sup>+</sup> + CO <sub>2</sub> | 1.01669 | -3317.20963    | 0.70602  | -3317.52030 | -41.1          | -16.7       |
| [7-F-M-IM8]                                                                                                                         | 0.13908 | -421.49519     | 0.09502  | -421.53925  |                |             |
| $[7-F-M-IM8]^{-} + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + H_{2} + [HNEt_{3}]^{+} + CO_{2}$                                       | 1.01487 | -3317.17204    | 0.70423  | -3317.48268 | 57.6           | 82.0        |
| 7-F-M-IM9                                                                                                                           | 0.35886 | -714.02138     | 0.28842  | -714.09181  |                |             |
| $7-F-M-IM9 + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + H_{2} + CO_{2}$                                                              | 1.01514 | -3317.19324    | 0.72499  | -3317.48339 | 2.0            | 80.2        |
| 7-F-M-TS4                                                                                                                           | 0.35578 | -714.02324     | 0.28912  | -714.08991  |                |             |
| $7-F-M-TS4 + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + H_{2} + CO_{2}$                                                              | 1.01207 | -3317.19510    | 0.72569  | -3317.48148 | -2.9           | 85.2        |
| 7-F-M-IM10                                                                                                                          | 0.36016 | -714.03203     | 0.29067  | -714.10152  |                |             |
| $7-F-M-IM10 + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + H_{2} + CO_{2}$                                                             | 1.01645 | -3317.20389    | 0.72724  | -3317.49310 | -26.0          | 54.7        |
| MFD                                                                                                                                 | 0.15379 | -421.96692     | 0.10937  | -422.01134  |                |             |
| $MFD + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + H_{2} + CO_{2} + NEt_{3}$                                                          | 1.01395 | -3317.19474    | 0.70275  | -3317.50594 | -2.0           | 21.0        |

**Table S19.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction stage (viii) of  ${}^6[Ru(PPh_3)]^{3+} + H_2 + L \rightarrow {}^6[RuH]^{2+} + [HL]^+ + PPh_3$  (L = PPh<sub>3</sub>, NEt<sub>3</sub>, and PY) and  ${}^6[Ru(PPh_3)]^{3+} + H_2 \rightarrow {}^6[Ru(H)_2]^{3+} + PPh_3$  at M06/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ZPE      | E <sub>c</sub> | $G_0$     | $G_{c}$      | E <sub>r</sub> | $G_{\rm r}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----------|--------------|----------------|-------------|
| ${}^{6}[Ru(PPh_{3})]^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.27415  | -1129.92479    | 0.19644   | -1130.00251  |                |             |
| PPh <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.27244  | -1035.47240    | 0.20382   | -1035.54102  |                |             |
| $\left[\mathrm{HPPh}_3\right]^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.28366  | -1035.91017    | 0.21535   | -1035.97848  |                |             |
| NEt <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.20387  | -292.05597     | 0.15681   | -292.10303   |                |             |
| $[HNEt_3]^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.21950  | -292.50499     | 0.17264   | -292.55185   |                |             |
| PY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.08809  | -248.07271     | 0.05210   | -248.10871   |                |             |
| $[HPY]^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10172  | -248.51019     | 0.06550   | -248.54641   |                |             |
| LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.12706  | -420.80704     | 0.07904   | -420.85507   |                |             |
| НСООН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03342  | -189.70312     | 0.00298   | -189.73356   |                |             |
| $H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00981  | -1.15796       | -0.00228  | -1.17005     |                |             |
| CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01180  | -188.54399     | -0.01351  | -188.56930   |                |             |
| $^{6} [Ru(PPh_{3})]^{3+} + PPh_{3} + NEt_{3} + PY + LA + HCOOH + H_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00884  | -3317.19399    | 0.68891   | -3317.51393  | 0.0            | 0.0         |
| H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.009806 | -1.157963      | -0.002277 | -1.170046    |                |             |
| $H_2 + {}^6[Ru(PPh_3)]^{3+} + PPh_3 + NEt_3 + PY + LA + HCOOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.008843 | -3317.193988   | 0.688905  | -3317.513926 | 0.0            | 0.0         |
| ${}^{6}[Ru(H_{2})]^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.013971 | -95.588856     | -0.016603 | -95.61943    |                |             |
| ${}^{6}[Ru(H_{2})]^{3+} + 2*PPh_{3} + NEt_{3} + PY + LA + HCOOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.01129  | -3317.172487   | 0.681956  | -3317.501819 | 56.5           | 31.8        |
| <sup>6</sup> [Ru(H) <sub>2</sub> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005147 | -95.438249     | -0.022271 | -95.465667   |                |             |
| ${}^{6}[Ru(H)_{2}]^{3+} + 2*PPh_{3} + NEt_{3} + PY + LA + HCOOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.002466 | -3317.02188    | 0.676288  | -3317.348056 | 451.9          | 435.5       |
| <sup>6</sup> [8-H-P-IM1] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.293057 | -1131.078501   | 0.213197  | -1131.158361 |                |             |
| $6[8-H-P-IM1]^{3+} + PPh_3 + NEt_3 + PY + LA + HCOOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.01794  | -3317.18973    | 0.70794   | -3317.49973  | 11.2           | 37.3        |
| <sup>6</sup> [8-H-P-TS1] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.28697  | -1131.06014    | 0.20840   | -1131.13872  |                |             |
| ${}^{6}$ [8-H-P-TS1] ${}^{3+}$ + PPh <sub>2</sub> + NEt <sub>2</sub> + PY + LA + HCOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.01185  | -3317.17138    | 0.70314   | -3317.48009  | 59.4           | 88.8        |
| <sup>6</sup> [8-H-P-IM2] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.29269  | -1131.07826    | 0.21771   | -1131.15324  | 0,,,,          | 00.0        |
| ${}^{6}$ [8 H D IM2] <sup>3+</sup> + DDb. + NEt. + DV + I A + HCOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.01757  | 2217 18050     | 0.71245   | 2217 40461   | 11.9           | 50.7        |
| [6-11-1-11012] + 11113 + 14E3 + 11 + EA + 11C0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00420  | -95 16229      | -0.02229  | -95 18878    | 11.0           | 50.7        |
| [Kuri]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.01274  | 2217 18270     | 0.68780   | 2217 50862   | 27.0           | 12.0        |
| $[KuH] + PPh_3 + NEt_3 + PY + LA + HCOOH + [HPPh_3]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.01274  | -5517.18570    | 0.08780   | -3317.30803  | 27.0           | 13.9        |
| <sup>6</sup> [8-H-N-IM1] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.22797  | -387.65914     | 0.17408   | -387.71303   |                |             |
| ${}^{6}$ [8-H-N-IM1] ${}^{3+}$ + 2*PPh <sub>3</sub> + PY + LA + HCOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.02141  | -3317.18680    | 0.71582   | -3317.49239  | 18.9           | 56.5        |
| <sup>6</sup> [8-H-N-TS1] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.22128  | -387.63858     | 0.16380   | -387.69606   |                |             |
| ${}^{6}$ [8-H-N-TS1] <sup>3+</sup> + 2*PPh <sub>2</sub> + PY + LA + HCOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.01472  | -3317.16624    | 0.70554   | -3317.47542  | 72.8           | 101.1       |
| <sup>6</sup> [8-H-N-IM21 <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 22697  | -387 66630     | 0 16687   | -387 72639   | ,2.0           | 101.1       |
| ${}^{6}$ [8 H N [M2] <sup>3+</sup> + 2*DDb. + DV + I A + HCOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.02041  | 3317 10206     | 0.70862   | 2217 50576   | 0.1            | 21.5        |
| $[6-H-IN-INIZ] + 2^{-}FFI3 + FI + LA + HCOOH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00420  | -5517.19590    | 0.70802   | -5517.50570  | 0.1            | 21.5        |
| [KuH] $^{6}$ [KuH] $^{1}$ (1) $^{2+}$ (2) $^{2+}$ (2) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) $^{2+}$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | 1.01715  | -93.10229      | -0.02229  | -95.18878    | 2.5            | 15.0        |
| $[RuH] + 2^{\circ}PPh_3 + PY + LA + HCOOH + [HNEt_3]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.01/15  | -3317.19494    | 0.69209   | -3317.32000  | -2.5           | -15.9       |
| <sup>6</sup> [8-H-Y-IM1] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10688  | -343.66627     | 0.05929   | -343.71385   |                |             |
| 6[8-H-Y-IM1] <sup>3+</sup> + 2*PPh <sub>3</sub> + NEt <sub>3</sub> + LA + HCOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.01610  | -3317.17719    | 0.70575   | -3317.48754  | 44.1           | 69.3        |
| <sup>6</sup> [8-H-Y-TS1] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10619  | -343.64604     | 0.05710   | -343.69513   |                |             |
| $^{6}$ [8-H-Y-TS1] <sup>3+</sup> + 2*PPh <sub>3</sub> + NEt <sub>3</sub> + LA + HCOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.01542  | -3317.15696    | 0.70356   | -3317.46882  | 97.2           | 118.4       |
| <sup>6</sup> [8-H-Y-IM2] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10954  | -343.66745     | 0.06248   | -343.71451   |                |             |
| ${}^{6}$ [8-H-Y-IM2] <sup>3+</sup> + 2*PPh <sub>3</sub> + NEt <sub>3</sub> + LA + HCOOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.01877  | -3317.17837    | 0.70894   | -3317.48819  | 41.0           | 67.6        |
| <sup>6</sup> [RuH] <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00420  | -95.16229      | -0.02229  | -95.18878    |                |             |
| ${}^{6}$ [RuH] <sup>2+</sup> + 2*PPh <sub>3</sub> + NEt <sub>3</sub> + LA + HCOOH + [HPY] <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.01515  | -3317.18340    | 0.68967   | -3317.50888  | 27.8           | 13.3        |

**Table S20.** Zero-point energies (*ZPE*, hartree), thermal correction to Gibbs free energy ( $G_0$ , hartree), total energies ( $E_c$ , hartree) corrected by *ZPE*, sum of electronic and thermal free energies ( $G_c$ , hartree) with *ZPE* and thermal corrections, and relative energies ( $E_r$ , kJ mol<sup>-1</sup>) and relative Gibbs free energies ( $G_r$ , kJ mol<sup>-1</sup>) relative to the reactants for the reaction stage of HCOO<sup>-</sup> + LA  $\rightarrow$  GVL + HCO<sub>3</sub><sup>-</sup> in presence of PPh<sub>3</sub> at MO6/def2TZVP, 6-311++G(d,p) level in aqueous solution.

| Species                                                                                                                                                                                                      | ZPE     | E <sub>c</sub> | $G_0$    | Gc          | E <sub>r</sub> | $G_{\rm r}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------|-------------|----------------|-------------|
| <sup>6</sup> [Ru(PPh <sub>3</sub> )] <sup>3+</sup>                                                                                                                                                           | 0.27415 | -1129.92479    | 0.19644  | -1130.00251 |                |             |
| PPh <sub>3</sub>                                                                                                                                                                                             | 0.27244 | -1035.47240    | 0.20382  | -1035.54102 |                |             |
| NEt <sub>3</sub>                                                                                                                                                                                             | 0.20387 | -292.05597     | 0.15681  | -292.10303  |                |             |
| $[HNEt_3]^+$                                                                                                                                                                                                 | 0.21950 | -292.50499     | 0.17264  | -292.55185  |                |             |
| PY                                                                                                                                                                                                           | 0.08809 | -248.07271     | 0.05210  | -248.10871  |                |             |
| LA                                                                                                                                                                                                           | 0.12706 | -420.80704     | 0.07904  | -420.85507  |                |             |
| НСООН                                                                                                                                                                                                        | 0.03342 | -189.70312     | 0.00298  | -189.73356  |                |             |
| $H_2$                                                                                                                                                                                                        | 0.00981 | -1.15796       | -0.00228 | -1.17005    |                |             |
| $CO_2$                                                                                                                                                                                                       | 0.01180 | -188.54399     | -0.01351 | -188.56930  |                |             |
| GVL                                                                                                                                                                                                          | 0.12519 | -345.57698     | 0.08391  | -345.61826  |                |             |
| ${}^{6} [\text{Ru}(\text{PPh}_{3})]^{3+} + \text{PPh}_{3} + \text{NEt}_{3} + \text{PY} + \text{LA} + \text{HCOOH} + \text{H}_{2}$                                                                            | 1.00884 | -3317.19399    | 0.68891  | -3317.51393 | 0.0            | 0.0         |
| HCOO                                                                                                                                                                                                         | 0.02057 | -189.26496     | -0.00933 | -189.29486  |                |             |
| $HCOO^{-} + {}^{6}[Ru(PPh_{3})]^{3+} + PPh_{3} + PY + LA + H_{2} + [HNEt_{3}]^{+}$                                                                                                                           | 1.01162 | -3317.20485    | 0.69242  | -3317.52406 | -28.5          | -26.6       |
|                                                                                                                                                                                                              |         |                |          |             |                |             |
| $P^{-6}[2-F-S-IM1]^{2+}$                                                                                                                                                                                     | 0.29696 | -1319.22254    | 0.21134  | -1319.30816 |                |             |
| $P = {}^{6}[2 - F - S - IM1]^{2+} + PPh_3 + PY + LA + H_2 + [HNEt_3]^{+}$                                                                                                                                    | 1.01386 | -3317.23764    | 0.71665  | -3317.53485 | -114.6         | -54.9       |
| $P_{-}^{6}[2-F_{-}S_{-}TS_{-}TS_{-}1]^{2+}$                                                                                                                                                                  | 0.29350 | -1319.18214    | 0.20922  | -1319.26641 |                |             |
| $P_{1}^{6}$ (2 F S TS1) <sup>2+</sup> + PDb + PV + I A + H <sub>2</sub> + [HNEt <sub>2</sub> ] <sup>+</sup>                                                                                                  | 1 01040 | 3317 10724     | 0.71453  | 3317 /0311  | 85             | 54.7        |
| $p^{6} p p (100)^{2+}$                                                                                                                                                                                       | 0.20414 | 1310 10072     | 0.20054  | 1310 28/31  | -0.5           | 54.7        |
| P = [2 - F - 5 - 1012]                                                                                                                                                                                       | 0.29414 | -1319.19972    | 0.20954  | -1319.28451 | 54.7           |             |
| $P- [2-F-S-IM2] + PPh_3 + PY + LA + H_2 + [HNEt_3]$                                                                                                                                                          | 1.01104 | -331/.21482    | 0./1485  | -331/.51101 | -54./          | 1.1         |
| р <sup>6</sup> груд1 <sup>2+</sup>                                                                                                                                                                           | 0 28238 | -1130 63208    | 0 20340  | -1130 71107 |                |             |
| r - [Kuii]                                                                                                                                                                                                   | 1.01108 | 2217 10119     | 0.20540  | 2217 50706  | 74             | 10.1        |
| $\mathbf{P} = [\mathbf{K}\mathbf{U}\mathbf{H}] + \mathbf{P}\mathbf{H}3 + \mathbf{P}\mathbf{H} + \mathbf{L}\mathbf{A} + \mathbf{H}_2 + [\mathbf{H}\mathbf{N}\mathbf{E}\mathbf{I}_3] + \mathbf{C}\mathbf{O}_2$ | 1.01108 | -331/.19118    | 0.09320  | -331/.30/00 | /.4            | 16.1        |
| $P_{-6}^{-6}[3-E_{-}K_{-}IM4]^{2+}$                                                                                                                                                                          | 0 41221 | -1551 47355    | 0 31620  | -1551 56956 |                |             |
| $P^{6}[2 \in V   MA ^{2^{+}} + DD_{1} + DV + H_{1} + [UN Et]^{+} + CO_{1}$                                                                                                                                   | 1 01225 | 2217 22560     | 0.72807  | 2217 51049  | 83.0           | 0.0         |
| $r = [3 - 1 - K - 1014] + rr r 13 + rr 1 + 112 + [1114E13] + CO_2$                                                                                                                                           | 0.41079 | -5517.22500    | 0.72097  | -5517.51046 | -83.0          | 9.0         |
| P = [3 - F - K - 152]                                                                                                                                                                                        | 1.01241 | -1331.43320    | 0.51551  | -1551.55255 |                | 53.0        |
| $P - [3 - F - K - 1 S2] + PPh_3 + PY + H_2 + [HNEt_3] + CO_2$                                                                                                                                                | 1.01241 | -3317.20731    | 0.72627  | -5517.49545 | -35.0          | 53.8        |
| P-"[3-F-K-IM5] <sup>2+</sup>                                                                                                                                                                                 | 0.41533 | -1551.50415    | 0.31911  | -1551.60037 |                |             |
| $P^{-6}[3-F-K-IM5]^{2+} + PPh_3 + PY + H_2 + [HNEt_3]^{+} + CO_2$                                                                                                                                            | 1.01697 | -3317.25620    | 0.73188  | -3317.54129 | -163.3         | -71.8       |
| $P^{-6}[3-F-K-IM6]^{2+}$                                                                                                                                                                                     | 0.41705 | -1551.50419    | 0.32109  | -1551.60016 |                |             |
| $P-^{6}[3-F-K-IM6]^{2+} + PPh_3 + PY + H_2 + [HNEt_3]^{+} + CO_2$                                                                                                                                            | 1.01869 | -3317.25624    | 0.73385  | -3317.54108 | -163.4         | -71.3       |
| P- <sup>6</sup> [3-F-K-TS3] <sup>2+</sup>                                                                                                                                                                    | 0.41660 | -1551.47458    | 0.32325  | -1551.56794 |                |             |
| $P-^{6}[3-F-K-TS3]^{2+} + PPh_3 + PY + H_2 + [HNEt_3]^{+} + CO_2$                                                                                                                                            | 1.01824 | -3317.22664    | 0.73601  | -3317.50886 | -85.7          | 13.3        |
| P- <sup>6</sup> [3-F-K-IM7] <sup>2+</sup>                                                                                                                                                                    | 0.41726 | -1551.48799    | 0.32335  | -1551.58190 |                |             |
| $P = [3-F-K-IM7]^{2+} + PPh_3 + PY + H_2 + [HNEt_3]^+ + CO_2$                                                                                                                                                | 1.01889 | -3317.24004    | 0.73611  | -3317.52282 | -120.9         | -23.3       |
| P- <sup>6</sup> [3-F-K-IM8] <sup>2+</sup>                                                                                                                                                                    | 0.41743 | -1551.48094    | 0.32302  | -1551.57534 |                |             |
| $P_{1}^{6}[3 \text{ F K IM}]^{2+} + PD_{1+} + PV_{1+} + [HNIEt_{1}]^{+} + CO_{1+}$                                                                                                                           | 1.01906 | -3317 23299    | 0 73579  | -3317 51626 | 102.4          | 6.1         |
| $p_{1}^{6} = r r r^{6} r^{2}$                                                                                                                                                                                | 0.41526 | 1551 47375     | 0.32205  | 1551 56696  | -102.4         | -0.1        |
| $\Gamma = [3 - \Gamma - K - 134]$                                                                                                                                                                            | 1.01690 | -1331.47373    | 0.32203  | -1351.50090 | 02.5           | 15.0        |
| P- [3-F-K-1S4] + PPh <sub>3</sub> + PY + H <sub>2</sub> + [HNEt <sub>3</sub> ] + $CO_2$                                                                                                                      | 0.41406 | -3317.22381    | 0.75461  | -3317.30788 | -83.5          | 15.9        |
| P-"[3-F-K-IM9]"                                                                                                                                                                                              | 0.41486 | -1551.50210    | 0.31/10  | -1551.5998/ |                |             |
| $P - [3-F-K-IM9]^{2} + PPh_3 + PY + H_2 + [HNEt_3]^{2} + CO_2$                                                                                                                                               | 1.01650 | -3317.25416    | 0.72986  | -3317.54079 | -158.0         | -70.5       |
| $P-^{6}[RuOH]^{2+}$                                                                                                                                                                                          | 0.28700 | -1205.91067    | 0.20511  | -1205.99256 |                |             |
| $P-{}^{6}[RuOH]^{2+} + PPh_3 + PY + H_2 + [HNEt_3]^{+} + CO_2 + GVL$                                                                                                                                         | 1.01383 | -3317.23970    | 0.70179  | -3317.55174 | -120.0         | -99.3       |
| 6 2±                                                                                                                                                                                                         |         |                |          |             |                |             |
| $P-[4-F-C-IM11]^{2^{+}}$                                                                                                                                                                                     | 0.30034 | -1394.46490    | 0.20993  | -1394.55531 |                |             |
| $P - [4-F-C-IM11]^{2+} + PPh_3 + PY + H_2 + [HNEt_3]^{+} + GVL$                                                                                                                                              | 1.01536 | -3317.24994    | 0.72011  | -3317.54520 | -146.9         | -82.1       |
| P- <sup>6</sup> [4-F-C-TS5] <sup>2+</sup>                                                                                                                                                                    | 0.30027 | -1394.44970    | 0.21361  | -1394.53637 |                |             |
| $P-^{6}[4-F-C-TS5]^{2+} + PPh_3 + PY + H_2 + [HNEt_3]^{+} + GVL$                                                                                                                                             | 1.01530 | -3317.23475    | 0.72379  | -3317.52625 | -107.0         | -32.3       |
| P- <sup>6</sup> [4-F-C-IM12] <sup>2+</sup>                                                                                                                                                                   | 0.30417 | -1394.46484    | 0.22076  | -1394.54824 |                |             |
| $P-^{6}[4-F-C-IM12]^{2+} + PPh_3 + PY + H_2 + [HNEt_3]^{+} + GVL$                                                                                                                                            | 1.01920 | -3317.24988    | 0.73094  | -3317.53813 | -146.7         | -63.5       |
| HCO <sub>3</sub>                                                                                                                                                                                             | 0.02645 | -264.51134     | -0.00655 | -264.54433  |                |             |
| $HCO_{2}^{-} + {}^{6}[Ru(PPh_{2})]^{3+} + PPh_{2} + PV + H_{2} + [HNFt_{2}]^{+} + GVI_{2}$                                                                                                                   | 1.01562 | -3317 22117    | 0 70007  | -3317 53672 | -714           | -59.8       |