Supporting Information

Reactions of Gas-phase Uranyl Formate/Acetate Anions: Intra-complex Hydride Attack to Convert Carboxylates to Aldehydes

Amanda R. Bubas ${ }^{\dagger}$, Irena J. Tatosian, Anna Iacovino ${ }^{\ddagger}$ and Michael Van Stipdonk*
${ }^{1}$ Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Ave, Pittsburgh, PA 15282

LIST OF FIGURES

Figure S . Electrospray ionization spectrum generated from mix of $\left[\mathrm{UO}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{CH}_{3}\right)_{2}\right]$ and $\left[\mathrm{UO}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)_{2}\right]$ in $50: 50 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$. Asterisks identify peaks for which acetate is replaced by nitrate, which is a residual species in the capillary of the electrospray ionization source.

Figure S2. Product ion spectra derived from MS ${ }^{n} \mathrm{CID}$ of $\left[\mathrm{UO}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{CD}_{3}\right)_{2}\right]$: (a) CID (MS/MS stage) of $\left[\mathrm{UO}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{CD}_{3}\right)_{2}\right]^{-}$at $\mathrm{m} / \mathrm{z} 439$, (b) CID (MS^{3} stage) of dissociation product ion at m / z 395, (c) CID (MS ${ }^{4}$ stage) of dissociation product ion at m / z 348, and (d) CID (MS ${ }^{5}$ stage) of dissociation product ion at m / z 301. In the spectra, the circles and arrows illustrate the MS^{n} pathway. In each spectrum, the bold peak label indicates the precursor selected for CID while labels in italics represent the products from dissociation or ion-molecule reactions as indicated in the text.

Figure S3. Product ion spectra derived from MSn ${ }^{n}$ CID of $\left[\mathrm{UO}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{CD}_{3}\right)_{2}\right]^{-}$continued: (a) CID (MS ${ }^{3}$ stage) of product ion at $m / z 392$ generated by initial CID of $\left[\mathrm{UO}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{CD}_{3}\right)_{2}\right]^{-}$at $m / z 439$, (b) CID (MS ${ }^{4}$ stage) of dissociation product ion at $m / z 348$. The bold peak labels indicate the precursor selected for CID while labels in italics represent the products from dissociation or ion-molecule reactions as indicated in the text.

Figure S4. Product ion spectra generated by isolation of ion at m / z 389, without imposed collisional activation, in the ion trap for reaction with $\mathrm{H}_{2} \mathrm{O}$ (ca. 1×10^{-6} torr): (a) 1 ms , (b) 10 ms , (c) 100 ms , (d) 1 s and (e) CID of $m / z 405$ reaction product.

Figure S5. Product ion spectra generated by isolation of ion at $\mathrm{m} / \mathrm{z} 301$ (derived from CID of unlabeled precursor), without imposed collisional activation, in the ion trap for reaction with $\mathrm{H}_{2} \mathrm{O}$ (ca. 1×10^{-6} torr): (a) 1 ms , (b) 10 ms , (c) 100 ms and (d) 1 s .

Figure S6. Product ion spectra generated by isolation of ion at $\mathrm{m} / \mathrm{z} 304$ (derived from CID of complex containing $\mathrm{CD}_{3} \mathrm{CO}_{2} \mathrm{H}$), without imposed collisional activation, in the ion trap for reaction with $\mathrm{H}_{2} \mathrm{O}$ (ca. 1×10^{-6} torr): (a) 1 ms , (b) 10 ms , (c) 100 ms and (d) 1 s .

Figure S7. Product ion spectra derived from $\mathrm{MS}^{n} \mathrm{CID}$ of $\left[\mathrm{UO}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{CD}_{3}\right)\right]$: (a) CID (MS/MS stage) of $\left[\mathrm{UO}_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)_{2}\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{CD}_{3}\right)\right]^{-}$at $\mathrm{m} / \mathrm{z} 422$, (b) $\mathrm{CID}\left(\mathrm{MS}^{3}\right.$ stage) of dissociation product ion at $m / z 378$ and (c) CID (MS ${ }^{4}$ stage) of dissociation product ion at $m / z 348$. In the spectra, the
circles and arrows illustrate the MS^{n} pathway. In each spectrum, the bold peak label indicates the precursor selected for CID while labels in italics represent the products from dissociation or ion-molecule reactions as indicated in the text.

Figure S8. Product ion spectra generated by isolation of ion at $m / z 375$, without imposed collisional activation, in the ion trap for reaction with $\mathrm{H}_{2} \mathrm{O}$ (ca. 1×10^{-6} torr): (a) 1 ms , (b) 10 ms , (c) 100 ms , (d) 1 s and (e) CID of $m / z 391$ reaction product.

Figure S9. Relevant minima and transition state structures for the dissociation of $\left[\mathrm{UO}_{2}(\mathrm{H})\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)_{2}\right]^{-}$.
Figure S10. The relevant minima and transition state structures for the dissociation of $\left[\mathrm{UO}_{2}(\mathrm{H})\left(\mathrm{O}_{2} \mathrm{C}\right.\right.$ -$\left.\left.\mathrm{CH}_{3}\right)_{2}\right]^{-}$.

Figure S11. A reaction energy diagram for CID of $\left[\mathrm{UO}_{2}(\mathrm{H})\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{CH}_{3}\right)_{2}\right]^{-}$.
Figure S12. The relevant minima and transition state structures for the dissociation of $\left[\mathrm{UO}_{2}(\mathrm{H})\left(\mathrm{O}_{2} \mathrm{C}\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right)\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)\right]^{-}$.

Figure S13. Relevant minima and transition state structures for the reactions of $\left[\mathrm{UO}_{2}(\mathrm{O})\left(\mathrm{CH}_{3}\right)\right]^{-}$with $\mathrm{H}_{2} \mathrm{O}$.

LIST OF TABLES

Table S1. The zero-point corrected electronic energies and free energies for minima and transition states for intra-complex hydride attack during CID of $\left[\mathrm{UO}_{2}(\mathrm{H})\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)_{2}\right]^{-}$.

Table S2. The zero-point corrected electronic energies and free energies for minima and transition states for intra-complex hydride attack during CID of $\left[\mathrm{UO}_{2}(\mathrm{H})\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{CH}_{3}\right)_{2}\right]$

Table S3. The zero-point corrected electronic energies and free energies for minima and transition states for intra-complex hydride attack during CID of $\left[\mathrm{UO}_{2}(\mathrm{H})\left(\mathrm{O}_{2} \mathrm{C}\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right)\left(\mathrm{O}_{2} \mathrm{C}-\mathrm{H}\right)\right]^{-}$.

Table S4. The zero-point corrected electronic energies and free energies for minima and transition states for reaction of $\left[\mathrm{UO}_{2}(\mathrm{O})\left(\mathrm{CH}_{3}\right)\right]^{-}$with $\mathrm{H}_{2} \mathrm{O}$.

Figure S1.

Figure S2.

Figure S3.

Figure 54.

Figure 55.

Figure 56.

Figure 57.

Figure 88.

TSII \rightarrow III

Figure S9.

Figure S10.

Figure S11.

Figure S12

Figure S13.

Table S1.

Structure	Zero-point corrected electronic energy	Thermally corrected free energy
I	-1004.615232	-1004.654507
II	-1004.604059	-1004.644649
TS II->III	-1004.565179	-1004.604376
III	-1004.574499	-1004.615464
IV	-890.057297	-890.092941
formaldehyde	-114.502636	-114.524283

Table S2.

Structure	
l-ac	Zero-point corrected electronic energy
-1083.221641	

I-ac
II-ac
TS II-ac->III-ac
III-ac
IV -ac
acetaldehyde
Structure
V
VI
TS VI->VII
VII
VIII
acetaldehyde
IX
TS IX->X
X
XI
formaldehyde

Zero-point corrected electronic energy
Table S3.

-1043.918513	-1043.961161
-1043.906032	-1043.947874
-1043.864826	-1043.905718
-1043.884324	-1043.929082
-890.057297	-890.092941
-153.810131	-153.835063
-1043.907696	
-1043.868536	-1043.950918
-1043.877684	-1043.910748
-929.359691	-1043.922421
-114.502636	-929.397871
	-114.524283

Table S4.

Structure	Zero-point corrected electronic energy	Thermally corrected free energy
XII	-740.656324	-740.690521
$\mathrm{H}_{2} \mathrm{O}$	-76.423266	-76.440903
XIII	-817.101013	-817.138227
TSXI II-> XIV	-817.100974	-817.137112
XIV	-817.145404	-817.184582
V	-776.660695	-776.694344
CH $_{4}$	-40.480523	-40.497825
XVI	-817.101055	-817.138367
TSXVI->XVII	-817.094361	-817.130389
XVII	-817.143981	-817.180702

