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S.1 Convergence test details

Before performing the geometry optimization calculations, a convergence test was
conducted to ensure the accuracy of calculation using less calculation time. Convergence test
was done by optimizing the cut-off value and the k-point sampling of the Brillouin zone. For
faster optimizations, fluorapatite (Caio(PO4)sF,; FAp) was used as model structure. The
structure of FAp is very similar to hexagonal hydroxyapatite (HAp). The only difference
between the two structures would be the anion in the screw-axis, wherein FAp have F ions
while HAp have OH-ions. Since the F-ion in FAp can be found in the z = % and % mirror planes,
first-principles calculations of the FAp structure are simpler and faster. The initial coordinates

of FAp followed the results of Rulis et al. 1.

Initially, the conditions for GGA-PW91 functional were tested using various cut-off values
ranging from 300 to 750 eV were tested using a constant k-point grid of 2x2x2. The final
energy values of these runs are presented in Fig. S1. Fig. S1 shows that the final energy

reached a stable value once the cut-off value reached 600 eV; therefore, it is set as the cut-
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off value for the geometry optimization of HAp.

Fig. S1. Plot of final energy values of FAp model at varying energy cut-off and constant k-

point grid of 2x2x2.



Using 600 eV, the value of k-point is optimized using the following test values: 1x1x2,
2x2x2, 2x2x4, 3x3x3, and 4x4x4. The plot of calculated final energies is shown in Fig. S2. It is

evident that the final energies did not vary a lot. The 3x3x3 setting was chosen to ensure high
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Fig. S2. Plot of final energy values of FAp model at varying k-point grids and constant

energy cut-off of 600 eV.

Convergence test for the energy cut-off for the LDA/CA-PZ functional were also
conducted. The results were presented in Fig. S3, and it is evident that a stable value can be

obtained at 600 eV. The energy cut-off was chosen to be 600 eV and the k-point was
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maintained at 3x3x3 for the phonon calculations.



Fig. S3. Plot of final energy values of FAp model at varying energy cut-off and constant k-

point grid of 2x2x2 using LDA/CA-PZ functional.
S.2 Supplementary Bi(lll) substituted HAp models

It was discussed in section 2-2 of the main text that the number of model structures were
decreased due to equivalency of some models. For the assumption that the position of O and
OH groups above or below the mirror plane results in equivalent structures, three test models
were selected. The Bi(1)HAp O model was used as reference with the arrangement of O and
OH hydroxyl ions shown in Fig. S3a. The two other models have (1) O below z = % and OH
above z = % (labeled as Bi(1)HAp HO-0O) and (2) O above z = % and OH below z = % (labeled as

Bi(1)HAp OH-0), as shown in Fig. S3b and

(a) (b) é (c)

S3c, respectively.

Fig. S4 lllustration of hydroxyl channel of (a) Bi(1)HAp O (reference), (b) Bi(1)HAp with O

below z = % and OH above z = %, (c) Bi(1)HAp with O above z = % and OH below z = %.



Table S1 summarized the final energy values of the three models. It is very evident that
the final energy values are almost equal, and the position of O and OH groups can be

practically ignored.

Table S1. Final energy values of Bi(1)HAp O model, Bi(1)HAp HO-O (O below z = % and OH

above z = %), and Bi(1)HAp OH-O (O above z = % and OH below z = %).

Final Energy per
Model Name
atom (eV/atom)

Bi(1)HAp O -558.6125
Bi(1)HAp HO-O -558.6148
Bi(1)HAp OH-O -558.6123

Table S2. Final energy values of Bi(1)HAp O, Bi(1)HAp OH, Bi(2)HAp O, and Bi(2)HAp OH

models using LDA/CA-PZ functional.

Final Energy per
Model Name
atom (eV/atom)

Bi(1)HAp O -557.9774
Bi(1)HAp OH -557.9803
Bi(2)HAp O -557.9994

Bi(2)HAp OH -557.9995




Fig. S5. Optimized structures of the following models (bottom view/XY plane view): (a) HAp
H (OH-HO arrangement), (b) HAp O (HO-OH arrangement), (c) Bi(1)HAp OH (Bi3* near OH),

and (d) Bi(2)HAp OH (Bi3* near OH).
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Fig. S6. Phonon density of states and phonon dispersions of the (a, b) Bi(1)HAp O and (c, d)

Bi(2)HAp O models using the GGA-PW91 functional.
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Fig. S7. Summary of calculated vibrational frequencies of (a) Bi(1)HAp O and (b) Bi(2)HAp O

models using the LDA/CA-PZ functional.
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Fig. S8. Total density of states (DOS) and partial density of states (PDOS) plots of (a) HAp P,

(b) Bi(1)HAp O, and (c) Bi(2)HAp O models.
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