Supplementary information for:

Resilience of Hund's rule in the Chemical Space of Small Organic Molecules

Atreyee Majumdar and Raghunathan Ramakrishnan*

Tata Institute of Fundamental Research Hyderabad, Hyderabad 500046, India.

E-mail: ramakrishnan@tifrh.res.in

Assessment of methods for data-generation

For calculating the energies of the S_1 and T_1 excited states of all molecules in the bigQM7 ω dataset, we have evaluated the cost-accuracy trade-off in various approximations stemming from the choice of the basis set, accuracy of geometries, approximation of molecular integrals with resolution-of-identity, and the Tamm-Dancoff approximation (TDA) to time-dependent density functional theory (TDDFT). To this end, we have selected ten triangular molecules from a previous study¹ with the theoretical best estimates (TBEs) for the energies of S₁ and T₁ determined using frozen-core CCSD(T)/cc-pVTZ geometries. From the same study, we collected energies from ADC(2) and the TDDFT-SCS-PBE-QIDH methods using the augcc-pVTZ basis set. With these values as references, we evaluated the accuracy of ADC(2) and TDA using the smaller basis set def2-TZVP.

For all benchmark systems, S_1 and T_1 energies, along with the S_1 - T_1 gaps determined with various theoretical methods, are collected in Table S1, Table S2, and Table S3. The accuracies of different methods are quantified via the error metrics, mean signed error (MSE), mean absolute error (MAE), standard deviation of the error (SDE), minimum error (minE), and maximum error (maxE) in Table S4. We evaluate these metrics using the aforestated TBEs¹ as the reference. To understand the impact of the choice of geometries, we have performed geometry optimization of these ten molecules at the ω B97X-D3/def2-TZVP level.

From Table S1, we find that when using frozen-core CCSD(T)/cc-pVTZ geometries, ADC(2)/def2-TZVP predicts similar energies as ADC(2)/aug-cc-pVTZ. However, the error metrics in Table S4 suggest that for all S₁-T₁ gaps, the SDE drops from 0.034 eV to 0.011 eV, indicating the smaller basis set def2-TZVP to perform better in the ADC(2) calculations. We also note similar improvement for S₁ and T₁ energies. This trend is in line with the observation made in an earlier study² that ADC2/aug-cc-pVDZ yields a more accurate S₁-T₁ gap for triangular molecules than ADC(2)/aug-cc-pVTZ due to a favorable error cancellation. ADC(2)/def2-TZVP values determined using ω B97X-D3/def2-TZVP geometries (see Table S3) very closely resemble ADC(2)/def2-TZVP values determined using CCSD(T)/ccpVTZ geometries (see Table S1). Further, while the change in geometry has a small influence on the error metrics for S₁ and T₁ energies, due to the cancellation of effects, the metrics for the S₁-T₁ gap are less influenced.

We also compare the TDDFT/SCS-PBE-QIDH/aug-cc-pVTZ (determined using CCSD(T)/ccpVTZ geometries) results from Ref. 1, to TDA analog in Table S2. In this Table, we have also reported TDDFT values calculated by us using geometries from Ref. 1 and find our results to agree with previously reported values precisely, assuring that our computational settings are consistent with the previous study. Moving from TDDFT to TDA, the largest effect is seen for molecule 6. At the TDDFT level, this system's S_1 -T₁ gap is -0.32 eV, which increases to -0.03 eV at the TDA level. However, we find the TDA value better to approximate the TBE value of -0.07 eV from Table S1. For the S_1 -T₁ gap, TDDFT values of MSE, MAE, and SDE are -0.033, 0.055, and 0.081 eV, respectively, which drop to 0.034, 0.034, and 0.012 eV when using TDA. The SDE of TDA is 8-fold smaller than that of TDDFT, indicating smaller non-systematic errors in the predictions.

The TDA calculations when performed using def2-TZVP basis set, in combinaton with

 ω B97X-D3/def2-TZVP geometries (Table S3), result in increasing MSE and MAE for S₁ and T₁ energies. However, due to the cancellation of effects, the MAE and SDE for the S₁-T₁ gap are smaller than TDDFT/aug-cc-pVTZ and TDA/aug-cc-pVTZ (see Table S4); the latter two using CCSD(T)/cc-pVTZ geometries from Ref. 1.

Hence, combining the favorable effects of TDA and a smaller basis set, we have used TDA-TDDFT/def2-TZVP in combination with various DFT approximations to generate the excited state energetics of the bigQM7 ω dataset.

Table S1: Energies of the S_1 and T_1 states with respect to the S_0 ground state along with the singlet-triplet gap, S_1 - T_1 , of 10 triangular benchmark systems reported in Ref. 1. ADC(2)/def2-TZVP results are compared with theoretical best estimate (TBE) and ADC(2)/aug-cc-pVTZ values from Ref. 1. All values are in eV and # indicates compound number. In all calculations, we used geometries determined with the CCSD(T)/cc-pVTZ method reported in Ref. 1.

#	TBE^a			ADC(2	2)/aug-co	c-pVTZ ^a	ADC(2	2)/def2-7	$\Gamma Z V P^b$
	S_1	T_1	S_1-T_1	S_1	T_1	S_1-T_1	S_1	T_1	S_1 - T_1
1	2.717	2.936	-0.219	2.675	2.921	-0.246	2.665	2.915	-0.250
2	0.979	1.111	-0.131	1.001	1.138	-0.137	1.001	1.139	-0.138
3	1.562	1.663	-0.101	1.551	1.664	-0.113	1.548	1.665	-0.117
4	2.177	2.296	-0.119	2.159	2.298	-0.139	2.153	2.295	-0.142
5	2.127	2.230	-0.103	2.098	2.225	-0.127	2.093	2.225	-0.132
6	0.833	0.904	-0.071	0.851	0.945	-0.094	0.854	0.950	-0.096
7	0.693	0.735	-0.042	0.708	0.782	-0.074	0.714	0.791	-0.078
8	0.554	0.583	-0.029	0.565	0.635	-0.070	0.575	0.646	-0.071
9	1.264	1.463	-0.199	1.274	1.488	-0.214	1.271	1.487	-0.216
10	1.522	1.827	-0.305	1.639	2.074	-0.435	1.526	1.840	-0.314

^a From Ref. 1.

^b This work.

Table S2: Energies of the S_1 and T_1 states with respect to the S_0 ground state along with the singlet-triplet gap, S_1 - T_1 , of 10 triangular benchmark systems reported in Ref. 1. All energies were determined using TDDFT or its Tamm–Dancoff approximation (TDA) employing the SCS-PBE-QIDH double-hybrid DFT method and the aug-cc-pVTZ basis set. All values are in eV and # indicates compound number. In all calculations, we used geometries determined with the CCSD(T)/ccpVTZ method reported in Ref. 1.

#	$\mathrm{TDDFT}/\mathrm{aug}\text{-}\mathrm{cc}\text{-}\mathrm{pVTZ}^a$		TDDF	$\mathrm{TDDFT}/\mathrm{aug}\text{-}\mathrm{cc}\text{-}\mathrm{pVTZ}^b$			$TDA/aug-cc-pVTZ^b$		
	S_1	T_1	S_1 - T_1	S_1	T_1	S_1 - T_1	S_1	T_1	S_1-T_1
1	2.770	2.987	-0.217	2.770	2.986	-0.216	2.845	3.055	-0.210
2	1.039	1.163	-0.124	1.037	1.161	-0.124	1.112	1.196	-0.084
3	1.621	1.685	-0.064	1.620	1.685	-0.065	1.696	1.749	-0.053
4	2.239	2.340	-0.101	2.238	2.339	-0.101	2.317	2.405	-0.088
5	2.188	2.245	-0.057	2.186	2.243	-0.057	2.264	2.331	-0.067
6	0.881	1.201	-0.320	0.879	1.202	-0.323	0.959	0.986	-0.027
$\overline{7}$	0.728	0.825	-0.097	0.726	0.824	-0.098	0.809	0.808	0.001
8	0.574	0.673	-0.099	0.573	0.672	-0.099	0.658	0.647	0.011
9	1.305	1.538	-0.233	1.305	1.538	-0.233	1.398	1.567	-0.169
10	1.566	1.906	-0.340	1.566	1.906	-0.340	1.659	1.947	-0.288

 a From Ref. 1.

 b This work.

Table S3: ADC(2) and TDA-SCS-PBE-QIDH energies of the S_1 and T_1 states with respect to the S_0 ground state along with the singlet-triplet gap, S_1 - T_1 , of 10 triangular benchmark systems reported in Ref. 1. All values are in eV and # indicates compound number. All calculations were performed using the def2-TZVP basis set, and geometries calculated with the ω B97X-D3/def2-TZVP method.

#	ADC(2)/def2-TZVP			TDA/c	TDA/def2-TZVP				
	S_1	T_1	S_1-T_1	S_1	T_1	S_1-T_1			
1	2.691	2.935	-0.244	2.865	3.070	-0.205			
2	1.021	1.158	-0.137	1.135	1.219	-0.084			
3	1.569	1.684	-0.115	1.716	1.770	-0.054			
4	2.175	2.313	-0.139	2.336	2.420	-0.084			
5	2.115	2.243	-0.128	2.283	2.350	-0.067			
6	0.884	0.982	-0.098	0.995	1.027	-0.032			
$\overline{7}$	0.752	0.830	-0.078	0.857	0.860	-0.003			
8	0.620	0.689	-0.069	0.715	0.706	0.009			
9	1.265	1.480	-0.215	1.390	1.558	-0.168			
10	1.518	1.828	-0.310	1.648	1.931	-0.283			

Table S4: Error metrics for predicting the $S_1 \& T_1$ energetics of 10 triangular benchmark systems reported in Ref. 1. Values are reported for various theoretical methods in comparison with the theoretical best estimates from Ref. 1. MSE: mean signed error, MAE: mean absolute error, SDE: standard deviation of the error, minE: minimal error, maxE: maximal error are in eV.

Method	Energy	MSE	MAE	SDE	$\min E$	maxE
$ADC(2)/aug-cc-pVTZ^{a}$	S_1	0.009	0.029	0.041	-0.042	0.117
	T_1	0.042	0.046	0.072	-0.015	0.247
	S_1 - T_1	-0.033	0.033	0.034	-0.130	-0.006
	mean	0.006	0.036	0.049	-0.062	0.119
ADC(2)/def2-TZVP ^b	S_1	-0.003	0.022	0.025	-0.052	0.022
	T_1	0.021	0.026	0.027	-0.021	0.063
	S_1 - T_1	-0.024	0.024	0.011	-0.042	-0.007
	mean	-0.002	0.024	0.021	-0.038	0.026
ADC(2)/def2-TZVP ^c	S_1	0.018	0.027	0.031	-0.026	0.066
	T_1	0.040	0.040	0.038	-0.001	0.106
	S_1 - T_1	-0.021	0.021	0.011	-0.040	-0.005
	mean	0.012	0.029	0.027	-0.022	0.056
TDDFT-SCS-PBE-QIDH/aug-cc-pVTZ ^{a}	S_1	0.048	0.048	0.013	0.020	0.062
	T_1	0.082	0.082	0.076	0.015	0.297
	S_1 - T_1	-0.033	0.055	0.081	-0.249	0.046
	mean	0.032	0.062	0.057	-0.071	0.135
$\mathrm{TDA} ext{-}\mathrm{SCS} ext{-}\mathrm{PBE} ext{-}\mathrm{QIDH}/\mathrm{aug} ext{-}\mathrm{cc} ext{-}\mathrm{pVTZ}^b$	S_1	0.129	0.129	0.011	0.104	0.140
	T_1	0.094	0.094	0.018	0.064	0.120
	S_1 - T_1	0.034	0.034	0.012	0.009	0.048
	mean	0.086	0.086	0.014	0.059	0.103
TDA-SCS-PBE-QIDH/def2-TZVP c	S_1	0.151	0.151	0.013	0.126	0.164
	T_1	0.116	0.116	0.011	0.095	0.134
	S_1 - T_1	0.035	0.035	0.010	0.014	0.047
	mean	0.101	0.101	0.011	0.078	0.115

 a Using CCSD(T)/cc-pVTZ geometries from Ref. 1.

 a This work, using CCSD(T)/cc-pVTZ geometries from Ref. 1.

 c Using $\omega B97X\text{-}D3/\text{def2-}TZVP$ geometries, this work.

Figure S1: Probability density of the shift in S_1 and T_1 energies (in eV) of 12,880 molecules with the introduction of spin-component-scaling (SCS) and opposite-spin-component-scaling (SOS) in PBE-QIDH and RSX-QIDH methods.

Figure S2: Distribution of S_1 and T_1 energies of 12,880 molecules calculated with ADC(2) and SCS-PBE-QIDH methods shown jointly with the S_1 - T_1 gap.

[1]:	import pymoldis											
	df=pymoldis.get_data('bigqm7w_S1T1') df.describe()											
[1]:		Natoms	S1_SCSPBEQIDH(eV)	T1_SCSPBEQIDH(eV)	f01_SCSPBEQIDH(au)	S1_ADC2(eV)	T1_ADC2(eV)	f01_ADC2(au)				
	count	12879.000000	12879.000000	12879.000000	12879.000000	12879.000000	12879.000000	12879.000000				
	mean	14.412144	6.287543	4.989370	0.099150	6.080681	5.009070	0.085172				
	std	2.907145	1.220643	1.372904	0.218265	1.196321	1.277183	0.169825				
	min	2.000000	1.809000	0.957000	0.000000	1.708240	0.945684	0.000000				
	25%	12.000000	5.657500	4.038000	0.001136	5.465241	4.093702	0.001144				
	50%	14.000000	6.393000	4.568000	0.007151	6.189377	4.732365	0.010504				
	75%	16.000000	7.011000	5.616000	0.050613	6.818060	5.924219	0.073313				
	max	23.000000	14.339000	13.844000	1.785412	14.010585	13.599737	1.362576				
[2]:	df.co	lumns										

Figure S3: Example query 1: Import the module pymoldis in Python code, load the bigQM7 ω dataset and perform a simple query to get an overall summary of the dataset using .describe() and the names of all the columns using the columns functionalities of Pandas module. Screenshot of a Jupyter notebook available at https://github.com/moldis-group/pymoldis. Note that, in pymoldis, we have removed the entries for the O₂ molecule as it is stable as a triplet in its ground state.

1]:	<pre>import py import pa df=pymole</pre>	ymoldis andas <mark>as</mark> pd dis.get data('biggm7)	w S1T1')			
	.,		-			
!]:	<pre>diff_S1=df['S1_SCSPBEQIDH(eV)']-df['S1_ADC2(eV)'] diff_T1=df['T1_SCSPBEQIDH(eV)']-df['T1_ADC2(eV)'] diff_S1T1=(df['S1_SCSPBEQIDH(eV)']-df['T1_SCSPBEQIDH(eV)'])-(df['S1_ADC2(eV)'] -df['T1_ADC2(eV)'])</pre>					
]:	diff=pd. diff.col diff.des	concat([diff_S1, dif umns=['Delta S1 (DFT cribe()	f_T1, diff_S1T1],axis -ADC2) (eV)','Delta 1	s=1) T1(DFT-ADC2) (eV)','Deta		
3]:	De	lta S1 (DFT-ADC2) (eV)	Delta T1(DFT-ADC2) (eV)	Deta S1T1 (DFT-ADC2) (eV)		
	count	12879.000000	12879.000000	12879.000000		
	mean	0.206861	-0.019700	0.226561		
	std	0.170101	0.199748	0.196457		
	min	-0.383320	-0.746130	-0.249989		
	25%	0.109476	-0.158107	0.069795		
	50%	0.200098	-0.053379	0.211206		
	75%	0.302947	0.087925	0.354126		
	max	1.039420	0.931055	1.295653		

Figure S4: Example query 2: Import pymoldis, calculate the deviations of SCS-PBE-QIDH predictions from ADC(2) values of S_1 , T_1 , and S_1 - T_1 energies, and get a summary of all three deviations.

Figure S5: Example query 3: Import pymoldis, load S_1 - T_1 energies from the SCS-PBE-QIDH and ADC(2) methods, and make a scatterplot.

:	import pymoldis						
	import	pandas as po					
	<pre>df=pymoldis.get_data('bigqm7w_SIT1')</pre>						
	<pre>S1T1_DFT=df['S1_SCSPBEQIDH(eV)'] - df['T1_SCSPBEQIDH(eV)']</pre>						
	NEntries=15						
	SmallG	ap_DFT_vals=S1T1_	OFT.nsmallest(NEntr	ies)			
	SMIs=d	f.iloc[SmallGap_D	FT_vals.index]['SMI	1			
	<pre>result = pd.concat([SMIs, SmallGap_DFT_vals], axis=1) result.columns = ['SMI','S1-T1(eV)'] print(result)</pre>						
		SMI	S1-T1(eV)				
	2674	'CC1(C)0C1(C)C'	-0.199				
	6449	'CCC1(C)CN1C'	-0.054				
	9153	'0C1CC2CN2C1'	-0.046				
	900	'CN1CC1(C)C'	-0.024				
	12679	'CC1CCC2CN12'	-0.019				
	9675	'CCC1(CF)CC1'	-0.012				
	12783	'CC1C2CCN1C2'	-0.008				
	12675	'CC1CCN2CC12'	-0.003				
	899	'CC10C1(C)C'	0.007				
	6451	'CN1CC1(C)CO'	0.011				
	2232	'C1CN2CC1C2'	0.012				
	9204	'CC1CC2CN1C2'	0.017				
	3692	'CCN1CC1(C)C'	0.023				
	2154	'CCC1CN1C'	0.028				
	9122	'C1CC2CN(C1)C2'	0.028				

Figure S6: Example query 4: Find 15 molecules in the bigQM7 ω dataset with the smallest S₁-T₁ energy gaps according to the SCS-PBE-QIDH/def2-TZVP method.

```
[1]: import pymoldis
import pandas as pd
df=pymoldis.get_data('bigqm7w_S1T1')
```

Find molecules with the least S1-T1 gap in DFT and ADC2

```
[2]: diff_dft=df['S1_SCSPBEQIDH(eV)'] - df['T1_SCSPBEQIDH(eV)']
diff_adc2=df['S1_ADC2(eV)'] - df['T1_ADC2(eV)']
N_smallest=5
entries_dft=df.iloc[diff_dft.abs().nsmallest(N_smallest).index]
entries_adc2=df.iloc[diff_adc2.abs().nsmallest(N_smallest).index]
```

Union of both sets

```
[3]: union_df=pd.concat([entries_dft, entries_adc2]).drop_duplicates()
     print(union_df[['SMI']])
                         SMI
      12675
               CC1CCN2CC12
     899
                'CC10C1(C)C
      12783
               CC1C2CCN1C2
      6451
               'CN1CC1(C)CO
      2232
                C1CN2CC1C2
      12810
            'C1C2CC3C1N3C2'
             'CC1(C)0C1(C)C
      2674
      9204
               CC1CC2CN1C2
     9151
               'CC1CC2CN2C1'
```

Intersection of both sets

```
[4]: intersection_df=pd.merge(entries_dft, entries_adc2, how='inner')
print(intersection_df[['SMI']])
SMI
0 'C1CN2CC1C2'
```

Figure S7: Example query 5: Find 5 molecules in the bigQM7 ω dataset with the smallest S₁-T₁ energy gaps according to the SCS-PBE-QIDH/def2-TZVP and the ADC(2) methods. Then, find the union and intersection of both sets.

```
[1]: import pymoldis
     df=pymoldis.get_data('bigqm7w_S1T1')
[2]: index=2232
     xyzfile='Mol_002232.xyz' # The XYZ will also be stored in this file
     pymoldis.makexyz(index,df,xyzfile)
     15
     Mol_002232.xyz
                          0.75720200
           1.16551200
                                         -0.00000400
     С
           1.07023400
                         -0.80010900
                                          0.00000300
     Ν
          -0.39240300
                         -1.04289800
                                          0.00000500
          -0.82255300
                                          1.01610000
                         -0.01894200
     C
          -0.33864800
                          1 03267300
                                         -0 00000400
          -0.82255400
                         -0.01895100
                                         -1.01609900
                          1.15390500
           1.66444500
                                         -0.88491300
     н
           1,66444600
                                          0.88490200
     н
                          1.15391200
           1.51620400
                         -1.25541900
                                          0.88379500
     н
           1.51620300
                         -1.25542600
                                         -0.88378600
          -0.32334700
                         -0.08922200
                                          1.98477500
     н
          -1.90392100
                          -0.04919600
                                          1.14389800
          -0.67188200
                                         -0.00000900
                          2,06893800
     н
                                         -1.98477400
          -0.32334800
                          -0.08923900
          -1.90392200
                         -0.04920600
                                         -1.14389600
```

Figure S8: Example query 6: Get the Cartesian coordinates of the equilibrium geometry of a molecule in the bigQM7 ω dataset (determined at the ω B97-XD/def2-TZVP level) using an index (perhaps one of them from the queries shown in Figure S6 or Figure S7.).

[1]:	<pre>l: import pymoldis df=pymoldis.get_data('bigqm7w_SIT1') lower_bound=2.5 upper_bound=3.0</pre>						
	<pre>filtered_df=df[(df['S1_ADC2(eV)'] >= lower_bound) & (df['S1_ADC2(eV)'] <= upper_bound) & (df['T1_ADC2(eV)'] >= lower_bound) & (df['T1_ADC2(eV)'] <= upper_bound)]</pre>						
<pre>filtered_df=filtered_df[['SMI','S1_ADC2(eV)','T1_ADC2(eV)','f01_ADC2(au)']]</pre>							
<pre>print(filtered_df.describe())</pre>							
	S1_ADC2(eV) T1_ADC2(eV) f01_ADC2(au) count 29.000000 29.000000 29.000000 mean 2.917751 2.554014 0.000651 std 0.046181 0.058709 0.001818 min 2.806677 2.59129 0.000000 25% 2.882445 2.509465 0.000070 50% 2.952526 2.572719 0.000287 max 2.984915 2.712730 0.009470						
[2]:	#uncom #filte	ment the next red_df	line to see	the full list			

Figure S9: Example query 7: Find molecules with S_1 and T_1 energies in the range 2.5–3.0 eV, and print a summary.

[1]:	import	pymoldis								
	df=pym	<pre>if=pymoldis.get_data('bigqm7w_SIT1')</pre>								
	contod	and struct cost val		DEOTDU(au) L assessed	ing-False)					
	filter	_osc_str=of.sort_val	ues(by='T01_SCSP	str[!s] sceppeotpu/	ng=raise)					
Tittered_varues_solited_osc_stit(solited_osc_stit(si_sc_sc_stit(si_sc_st))) <= 5]										
print(filtered_values[['SMT','S1_SCSPREOTDH(eV)','T1_SCSPREOTDH(eV)','f01_SCSPREOTDH(au)']].head(10))										
		CMT								
	12464		L_SCSPBEQIDH(eV)	11_SCSPBEQIDH(eV)						
	12404	clopcop1'	2.0//	1.033						
	7830	'Oclonconl'	2.515	1.051						
	7920	'Nclopcop1'	2.520	1.005						
	7828	'Colpacanl'	2.352	1 789						
	7650	'N=clnncn[nH]1'	2.430	1 894						
	7674	'N=clnncnol'	2,561	1 813						
	7666	'N=clnnccol'	2,939	2.144						
	7651	'0=c1nncn[nH]1'	2,366	1.672						
	7675	'0=clnncnol'	2.290	1.578						
		f01_SCSPBE0IDH(au)								
	12464	0.012447								
	2283	0.009638								
	7830	0.009556								
	7829	0.009373								
	7828	0.009014								
	7650	0.006721								
	7674	0.005766								
	7666	0.005710								
	7651	0.005283								
	7675	0.004827								

Figure S10: Example query 8: Find the bigQM7 ω molecules with the largest oscillator strength for the S₀ \rightarrow S₁ excitation, and print entries corresponding to the excitation energy of the S₁ state \leq 3 eV.

[1]:	<pre>import pymoldis</pre>
	df=pymoldis.get_data('bigqm7w_S1T1')
[2]:	<pre>pymoldis.print_MolFormula(df) # to print all molecular formulas in the dataset</pre>
	<pre>Item: C5_H9_N1_01, Frequency: 319 Item: C5_H8_01, Frequency: 295 Item: C5_H11_N1_01, Frequency: 287 Item: C5_H12_N1_01, Frequency: 287 Item: C5_H13_N1_01, Frequency: 280 Item: C5_H7_N1_01, Frequency: 230 Item: C5_H11_N1_01, Frequency: 236 Item: C5_H8_02, Frequency: 236 Item: C5_H8_01, Frequency: 236 Item: C5_H8_01, Frequency: 222 Item: C5_H10_N2, Frequency: 222 Item: C4_H7_N1_02, Frequency: 207 Item: C6_H13_N1, Frequency: 197 Item: C6_H12_01, Frequency: 193 Item: C5_H10_02, Frequency: 188 Item: C5_H10_02, Frequency: 177 Item: C6_H13_N1, Frequency: 176</pre>
[3]:	<pre>Formula='C3_H4_04' # pick a molecular formula indices=pymoldis.get_ConstitutionalIsomers(df,Formula) # get the indices of the constitutional isomers for the formula indices</pre>
[3]:	[2561, 3104, 5980, 6029, 7426, 9915]
[4]:	<pre>print(df[['SMI','S1_SCSPBEQIDH(eV)','S1_ADC2(eV)']].iloc[indices]) # get the properties of interest</pre>
	SMI S1_SCSPBEQIDH(eV) S1_ADC2(eV) 2561 'OC(=0)CC(0)=0' 5.956 5.845653 3104 'OC(=0)COC=0' 6.013 5.933349 5988 'OCC(=0)C(0)=0' 3.768 3.651278 6029 'OCC(=0)C(0)=0' 4.498 4.358432 7426 '0=C10C0C01' 7.023 6.928801 9915 '0=C0C0C0-0' 5.956 5.845559

Figure S11: Example query 9: Get a list of all molecular formula (atomic compositions) spanned by the bigQM7 ω molecules. Pick a molecular formula, and for the corresponding constitutional isomers, get indices, SMILES, and energetics.

Figure S12: Example query 10: For an index in the bigQM7 ω dataset, get the corresponding SMILES, and visualize the cartoon representation using the rdkit module

MINIMIN ENERCY COODDINATES (ANCETROEM) OF STRUCTURE 1 IN FIGURE 6

N	0.390872	1.428585	1.624955	
С	0.708861	1.815707	0.253755	
С	0.575682	3.347565	0.045517	
С	0.089341	3.961412	1.361490	
Н	-0.131796	3.573618	-0.756278	
Н	1.533710	3.788806	-0.241382	
С	1.283999	2.122298	2.548251	
С	1.118564	3.662217	2.456078	
Н	0.778668	4.076750	3.408734	
Н	2.070037	4.145241	2.219926	
Н	1.071210	1.764467	3.558078	
С	-0.992622	1.786176	1.923318	
С	-1.241399	3.307219	1.744630	
Н	-0.039013	5.039944	1.249580	
Н	-1.985937	3.494278	0.966417	
Н	-1.626810	3.750993	2.666145	
Н	1.723467	1.477122	0.032424	
Н	-1.642047	1.200697	1.268645	
Н	-1.207181	1.472821	2.947557	
Н	2.307905	1.823158	2.312964	
Н	0.038048	1.268226	-0.412274	

MINIMUM ENERGY COORDINATES (ANGSTROEM) OF STRUCTURE 1 IN FIGURE 6 Calculated with wB97X-D3/def2-TZVP _____

MINIMUM ENERGY COORDINATES (ANGSTROEM) OF STRUCTURE 2 IN FIGURE 6 Calculated with wB97X-D3/def2-TZVP

Ν	0.059194	1.259689	-0.034749	
С	0.181223	1.369404	-1.395803	
С	-0.296127	2.902657	-1.396472	
С	0.054220	3.314306	0.129364	
Η	-1.363092	3.048798	-1.581413	
Η	0.243182	3.522982	-2.117687	
С	1.181099	1.199343	0.750894	
С	1.520318	2.753136	0.525266	
Η	1.915932	3.242972	1.419373	
Η	2.223629	2.952868	-0.286825	
С	1.528474	-0.295853	0.278838	
Η	0.899558	1.113411	1.801396	
С	-1.183797	1.210035	0.541175	
С	-1.055725	2.697881	1.134222	
Η	0.050930	4.414046	0.217821	
Η	-1.993011	3.260095	1.099742	
Η	-0.688225	2.748816	2.162011	
С	-0.289605	-0.146435	-1.640642	
Η	1.235079	1.394086	-1.677194	
С	0.064753	-0.795176	-0.200259	
Η	0.247777	-0.642054	-2.453944	
Η	-1.356951	-0.264126	-1.843230	
Η	1.929624	-0.922619	1.080084	
Н	2.228482	-0.357077	-0.558021	
С	-1.048484	-0.352316	0.888450	
Η	0.066962	-1.894859	-0.288843	
Η	-1.956302	1.270798	-0.226817	
Η	-0.683096	-0.565357	1.895970	
Н	-1.983093	-0.906070	0.762965	

MINIMUM ENERGY COORDINATES (ANGSTROEM) OF STRUCTURE 3 IN FIGURE 6 Calculated with wB97X-D3/def2-TZVP

N	0.379208	1.545025	1.615145	
С	0.522414	1.919464	0.194214	
С	0.040684	3.378560	-0.020385	
С	0.070623	4.079408	1.341912	
Н	-0.971796	3.397890	-0.435621	
Η	0.687101	3.882379	-0.742271	
С	1.397206	2.264418	2.406877	
С	1.412052	3.764525	2.012063	
Н	1.569465	4.382515	2.898662	
Н	2.237474	3.978652	1.325930	
Н	1.089246	2.185002	3.450570	
С	-0.962585	1.942004	2.086010	
С	-1.045306	3.486323	2.208089	
Η	-0.060595	5.156597	1.225223	
Н	-2.028676	3.834363	1.884747	
Η	-0.923759	3.801422	3.249156	
Н	1.589067	1.872414	-0.031392	
Н	-1.668148	1.617693	1.319548	
С	-1.351177	1.237061	3.350943	
С	-2.472023	0.550734	3.501386	
Η	-0.672436	1.330637	4.194999	
Н	-3.177772	0.431281	2.685513	
Н	-2.727656	0.079541	4.442427	
С	2.748725	1.623174	2.311812	
С	3.451742	1.226245	3.359832	
Н	3.172792	1.510693	1.317038	
Н	4.436513	0.788344	3.252706	
Н	3.063378	1.320067	4.368993	
С	-0.151387	0.943751	-0.723295	
С	0.442594	0.367902	-1.755661	
Η	-1.200067	0.730826	-0.531445	
Н	-0.090516	-0.308915	-2.411831	
Н	1.487653	0.552956	-1.982883	

MINIMUM ENERGY COORDINATES (ANGSTROEM) OF STRUCTURE 4 IN FIGURE 6 Calculated with wB97X-D3/def2-TZVP

Ν	0.355841	1.689193	1.598935	
С	0.654217	1.567608	0.241850	
С	0.916390	3.184956	0.110907	
С	0.117101	3.739458	1.383964	
Н	0.492086	3.569881	-0.818793	
Н	1.953136	3.517290	0.137921	
С	1.382307	1.891585	2.521578	
С	0.949315	3.463932	2.724722	
Н	0.351171	3.699694	3.603907	
Н	1.834938	4.101303	2.773002	
С	1.206907	0.380433	3.106052	
С	-0.962678	1.564839	2.037086	
С	-1.333716	3.064287	1.474371	
Н	-0.010959	4.829075	1.268782	
Н	-1.838994	3.113681	0.510825	
Н	-1.969501	3.596206	2.185549	
С	1.368005	0.121696	0.488440	
С	0.595592	-0.357605	1.814591	
Н	2.440757	0.147130	0.671914	
Н	1.195988	-0.565099	-0.340160	
Н	0.525997	0.275976	3.949162	
Н	2.159615	-0.058002	3.402458	
С	-0.972163	-0.025668	1.682064	
Н	0.723680	-1.446292	1.930783	
Н	-1.563157	-0.604598	2.391255	
Н	-1.320345	-0.286401	0.684087	
С	-1.319803	1.664616	3.508357	
С	-2.446498	1.175892	4.005664	
Н	-0.689579	2.244579	4.167756	
Н	-3.139819	0.593203	3.409219	
Н	-2.718670	1.354144	5.037962	
С	2.830237	1.995063	2.078788	
С	3.843275	1.830891	2.916769	
Н	3.056792	2.300071	1.066856	
Н	4.862687	2.000213	2.594920	
Н	3.698317	1.535684	3.950444	
С	-0.433615	1.319396	-0.787093	
С	-0.169445	0.856936	-2.000303	
Н	-1.452131	1.607214	-0.567215	
Н	-0.950220	0.771167	-2.744907	
Н	0.828234	0.554823	-2.300199	

References

- Loos, P.-F.; Lipparini, F.; Jacquemin, D. Heptazine, Cyclazine, and Related Compounds: Chemically-Accurate Estimates of the Inverted Singlet–Triplet Gap. J. Phys. Chem. Lett. 2023, 14, 11069–11075.
- (2) Curtis, K.; King, C.; Odoh, S. O. Novel Triangulenes: Computational Investigations of Energy Thresholds for Photocatalytic Water Splitting. *ChemPhysChem.* **2023**, *24*, e202300556.