Supporting Information

Host-guest interaction induced room-temperature phosphorescence enhancement of organic dyes: a computational study

Xiaoli Luo^a, Yi Zeng^a, Haoran Wei^a, Xiaoyan Zheng^a*

^aKey Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

List of Contents

I. Supplementary Figures S1-S13

Fig. S1 The optimized unit cell structure of four host-guest complexes: (a) PYCl/CB[6], (b) PYBr/CB[6], (c) PYCl/CB[7], (d) PYBr/CB[7].

Fig. S2 The QM/MM model of (a) PYCl, (b) PYCl/CB[6] and (c) PYCl/CB[7] with the representative distance between the plane of PY⁺ and the counterion labeled.

Fig. S3 The wavelength of Phosphorescence at T_1 -geometry calculated by different functionals, including TPSSH, B3LYP, BMK and M06-2X coupled with 6-31G** basis set for PYBr.

Fig. S4 Single-crystal X-ray diffraction analysis of (a) PYCl, (b) PYBr. The dotted line shows the π - π interaction force between two adjacent molecules and hydrogen bond. Here, H-bond with the distance between the donor (D) and acceptor (A) atoms is less than 3.5 Å, and the angle of D-H-A is greater than 135°.

Fig. S5 Intermolecular interactions of (a) PYCl/CB[6], (b) PYBr/CB[6], (c) PYCl/CB[7], (d) PYBr/CB[7].

Fig. S6 The structural superposition and RMSD values of (a) PYCl, (b) PYBr, (c) PYCl/CB[6], (d) PYBr/CB[6], (e) PYCl/CB[7], (f) PYBr/CB[7] in the optimized S₀ and T₁ geometries in crystals

Fig. S7 (a) The frontier molecular orbitals at S₁-geometry of (a) PYCl/CB[7], PYBr/CB[7]. (b) The energy levels of key transition orbitals and the corresponding transition properties of PYBr, PYBr/CB[6] and PYBr/CB[7] at S₁. Fig. S8 The transition orbitals for the excited singlet state S_n (n≤4) of (a) PYCl, (b) PYBr, (c) PYCl/CB[6], (d) PYBr/CB[6], (e) PYCl/CB[7], (f) PYBr/CB[7].

Fig. S9 The frontier natural molecule transition orbitals for the T_1 of (a) PYCl, (b) PYBr, (c) PYCl/CB[6], (d) PYBr/CB[6], (e) PYCl/CB[7], (f) PYBr/CB[7].

Fig. S10 Energy level of HOMO, LUMO, and the corresponding energy gap based on T_1 geometries of the studied molecules. "H" means the "HOMO", "L" means the "LUMO".

Fig. S11 Transition orbitals of the high-lying triplet states of (a) PYCl and (b) PYBr.

Fig. S12 Transition orbitals of the high-lying triplet states of (a) PYCl/CB[6] and (b) PYBr/CB[6].

Fig. S13 Transition orbitals of the high-lying triplet states of (a) PYCl/CB[7] and (b) PYBr/CB[7].

II. Supplementary Tables S1-S9

Table S1. Table of unit cell parameters and cell volume for the host-guest complexes: PYCl/CB[6], PYBr/CB[6], PYCl/CB[7], PYBr/CB[7].

Table S2. Selected structural parameters of PYCl and PYBr at both the S_0 and T_1 geometry, the geometrical changes $|\Delta(T_1-S_0)|$ in crystal, respectively.

Table S3. Selected structural parameters of PYCl/CB[6], PYBr/CB[6], PYCl/CB[7], PYBr/CB[7] at both the S₀ and T₁ geometry, the geometrical changes $|\Delta(T_1-S_0)|$ in crystal, respectively.

Table S4. Calculated transition orbitals assignment and composition (%) of atoms in frontier molecule orbitals of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7] in S₁ state and T₁ state calculated by NAO method.

Table S5. Calculated vertical transition energy (eV), oscillator strength (f), assignments and transition nature in S_n of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7].

Table S6. The calculated properties of the excited states of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7], including oscillator strength of the S₁ ($f_{S_1}-S_0$) and the T₁ ($f_{T_1}-S_0$), transition dipole moment both

at S₁ (${}^{\mu_{S_1}-s_0}$) and T₁ (${}^{\mu_{T_1}-s_0}$), energy gap between the S₁ and T₁ (${}^{\Delta E_{T_1}-s_0}$), spin orbit coupling constant (${}^{\xi_{T_1}-s_1}$) between the S₁ and T₁, and the ratio of ${}^{\xi_{T_1}-s_1}$ to ${}^{\Delta E_{T_1}-s_0}$ (${}^{\xi_{T_1}-s_1/\Delta E_{T_1}-s_1}$).

Table S7. Calculated oscillator strength of the T_1 state $\begin{pmatrix} f_{T_1}-S_0 \end{pmatrix}$, vertical excitation energy of T_1 -S₀, phosphorescence wavelength of T_1 calculated at BMK/6-31G** level of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7] in crystal.

Table S8. Calculated phosphorescence radiation rate (k_P) of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7] at BMK/6-31G** level in crystal.

Table S9. Calculated reorganization energies (λ) of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7] in crystal at BMK/6-31G(d,p) level by AP method.

III. The optimized geometries and the corresponding coordinates of the QM region of the PYCl, PYBr and their complexes QM/MM models at both S_0 and T_1 states.

I. Supplementary Figures

Fig. S1 The optimized unit cell structure of four host-guest complexes: (a) PYCl/CB[6], (b) PYBr/CB[6], (c) PYCl/CB[7], (d) PYBr/CB[7].

Fig. S2 The QM/MM model of (a) PYCl, (b) PYCl/CB[6] and (c) PYCl/CB[7] with the representative distance between the plane of PY^+ and the counterion labeled.

Fig. S3 The wavelength of Phosphorescence at T_1 -geometry calculated by different functionals, including TPSSH, B3LYP, BMK and M06-2X coupled with 6-31G** basis set for PYBr.

Fig. S4 Single-crystal X-ray diffraction analysis of (a) PYCl, (b) PYBr. The dotted line shows the π - π interaction force between two adjacent molecules and hydrogen bond. Here, H-bond with the distance between the donor (D) and acceptor (A) atoms is less than 3.5 Å, and the angle of D-H-A is greater than 135°.

C-H…O (d1, d2, d3, d4) : 1.476, 1.632, 1.790, 2.407 C-H…N (d5, d6) : 2.538, 2.801

PYCI/CB[6]

 $\begin{array}{l} \textbf{C-H} \cdots \textbf{O} \ (\textbf{d1}, \textbf{d2}, \textbf{d3}) : 1.743, 1.940, 2.542 \\ \textbf{C-H} \cdots \textbf{N} \ (\textbf{d4}, \textbf{d5}, \textbf{d6}) : 2.057, 2.443, 2.813 \end{array}$

PYBr/CB[6]

C-H…O (d1, d2, d3) : 1.491, 2.211, 2.231 C-H…N (d4) : 3.028

PYBr/CB[7]

Fig. S5 Intermolecular interactions of (a) PYCl/CB[6], (b) PYBr/CB[6], (c) PYCl/CB[7], (d) PYBr/CB[7].

b

Fig. S6 The structural superposition and RMSD values of (a) PYCl, (b) PYBr, (c) PYCl/CB[6], (d) PYBr/CB[6], (e) PYCl/CB[7], (f) PYBr/CB[7] in the optimized S₀ and T₁ geometries in crystals.

Fig. S7 (a) The frontier molecular orbitals at S_1 -geometry of (a) PYCl/CB[7], PYBr/CB[7]. (b) The energy levels of key transition orbitals and the corresponding transition properties of the PYBr, PYBr/CB[6] and PYBr/CB[7] at S_1 .

Fig. S8 The transition orbitals for the excited singlet state S_n (n \leq 4) of (a) PYCl, (b) PYBr, (c) PYCl/CB[6], (d) PYBr/CB[6], (e) PYCl/CB[7], (f) PYBr/CB[7].

Fig. S9 The frontier natural molecule transition orbitals for the T₁ of (a) PYCl, (b) PYBr, (c) PYCl/CB[6], (d) PYBr/CB[6], (e) PYCl/CB[7], (f) PYBr/CB[7].

PYCIPYBrPYCI/CB[6]PYBr/CB[6]PYCI/CB[7]PYBr/CB[7]Fig. S10 Energy level of HOMO, LUMO, and the corresponding energy gap based on T1 geometries of the studied molecules. "H" means the "HOMO", "L" means the "LUMO".

Fig. S11 Transition orbitals of the high-lying triplet states of (a) PYCl and (b) PYBr.

b

Fig. S12 Transition orbitals of the high-lying triplet states of (a) PYCl/CB[6] and (b) PYBr/CB[6].

PYCI/CB[7]

PYBr/CB[7]

Fig. S13 Transition orbitals of the high-lying triplet states of (a) PYCl/CB[7] and (b) PYBr/CB[7].

II. Supplementary Tables

Table S1. Table of unit cell parameters and cell volume for the host-guest complexes:	PYCl/CB[6], PYBr/CB[6],
PYC1/CB[7], PYBr/CB[7].	

Complexes	<i>a</i> (Å)	<i>b</i> (Å)	c (Å)	α	β	γ	Volume (Å ³)
PYCl/CB[6]	20.74	13.97	10.68	90.00	120.97	90.00	2652.88
PYBr/CB[6]	20.86	13.99	10.88	90.11	121.42	89.87	2709.62
PYCl/CB[7]	12.85	20.13	31.66	90.00	92.59	90.00	8185.58
PYBr/CB[7]	12.95	19.91	32.27	89.97	91.26	89.96	8319.44

Table S2. Selected structural parameters of PYCl and PYBr at both the S_0 and T_1 geometry, the geometrical changes $|\Delta(T_1-S_0)|$ in crystal, respectively.

12 + N = 7 + 4 10 11 D ₁ 3	6 2 Br	ĸ					
			PYCl			PYBr	
		\mathbf{S}_0	T_1	$\Delta T_1\text{-}S_0 $	S_0	T_1	$\Delta T_1 - S_0 $
	$Br-X^-$	3.00	2.99	0.01	3.26	3.23	0.03
	C1-Br	2.00	1.96	0.04	2.01	1.98	0.03
	C4-C7	1.48	1.41	0.07	1.48	1.41	0.07
	C2-C1-Br	120.12	120.76	0.64	119.27	119.59	0.32
	C11-C7-C4	122.13	122.61	0.48	120.17	120.07	0.10
D_1	C5-C4-C17- C11	0.70	1.08	0.38	15.91	8.13	7.78

Table S3. Selected structural parameters of PYCl/CB[6], PYBr/CB[6], PYCl/CB[7], PYBr/CB[7] at both the S_0 and T_1 geometry, the geometrical changes $|\Delta(T_1-S_0)|$ in crystal, respectively.

		PYCl/CB[6]		F	PYBr/CB[6]		PYCl/CB[7]		PYBr/CB[7]				
		S_0	T_1	$\Delta T_1 - S_0 $	S_0	T_1	$\Delta T_1 - S_0 $	S_0	T_1	$\Delta T_1 - S_0 $	S_0	T_1	$\Delta T_1 - S_0 $
	C1-Br	2.05	2.00	0.05	2.13	2.10	0.03	2.02	1.99	0.03	2.02	1.99	0.03
	C4-C7	1.44	1.38	0.06	1.47	1.39	0.08	1.48	1.41	0.07	1.48	1.41	0.07
	C2-C1-Br	114.72	114.59	0.13	126.32	127.27	0.95	118.31	118.61	0.30	118.21	118.75	0.74
	C11-C7-C4	120.65	120.67	0.02	121.89	122.92	1.03	120.78	121.99	1.21	120.99	122.72	1.73
D_1	C5-C4-C17- C11	1.24	1.11	0.13	1.08	2.20	1.12	34.58	1.16	33.42	29.48	6.67	22.81

Compounds		S_1 T_1						
	Assignments	n	π	nature	Assignment	n	π	nature
DVC1		91 700/	16 100/	(12. 7*)	HOMO-3→LUMO (42%)	47.60%	51.30%	(π, π*
PICI	$HOMO \rightarrow LOMO (97\%)$	81.70%	16.10%	(n, π^*)	HOMO→LUMO (36%)	89.20%	5.70%	(n, π*)
PYBr	HOMO→LUMO (98%)	79.90%	18.30%	(n, π^*)	HOMO-3→LUMO (89%)	42.00%	62.10%	(π, π*
PYCl/CB[6]	HOMO→LUMO (97%)	30.10%	64.50%	(π, π^*)	HOMO→LUMO (89%)	25.60%	68.90%	(π, π*
PYBr/CB[6]	HOMO→LUMO (98%)	28.10%	67.80%	(π, π^*)	HOMO→LUMO (93%)	24.50%	71.10%	(π, π*]
PYCl/CB[7]	HOMO→LUMO (98%)	31.60%	66.10%	(π, π^*)	HOMO→LUMO (94%)	29.50%	67.80%	(π, π*)
PYBr/CB[7]	HOMO→LUMO (98%)	32.10%	65.30%	(π, π^*)	HOMO→LUMO (94%)	29.40%	67.70%	(π, π*)

Table S4. Calculated transition orbitals assignment and composition (%) of atoms in frontier molecule orbitals of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7] in S₁ state and T₁ state calculated by NAO method.

Table S5. Calculated vertical transition energy (eV), oscillator strength (f), assignments and transition nature in	n S _n
of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7].	

	States	Energy (eV)	f	Assignments	nature
	\mathbf{S}_1	3.06	0.0131	HOMO→LUMO (98%)	(n, π^*)
NACI	S_2	3.46	0.0001	HOMO-1→LUMO (99%)	(n, π *)
PYCI	S_3	3.48	0.0370	HOMO-2→LUMO (99%)	(n, π^*)
	S_4	4.14	0.0100	HOMO-3→LUMO (95%)	(π, π^*)
	\mathbf{S}_1	2.52	0.0065	HOMO→LUMO (98%)	(n, π^*)
N 40	S_2	2.60	0.0014	HOMO-1→LUMO (99%)	(n, π^*)
PYBr	S_3	2.66	0.0008	HOMO-2→LUMO (99%)	(n, π^*)
	S_4	4.23	0.0040	HOMO→LUMO+1 (64%) HOMO-3→LUMO (25%)	(π,π^*)
	\mathbf{S}_1	3.84	0.8343	HOMO→LUMO (95%)	(π, π^*)
PYCI/CB[6]	S_2	4.44	0.0149	HOMO-2→LUMO (58%) HOMO-1→LUMO (29%)	(n, π*)
	\mathbf{S}_1	4.20	0.8619	HOMO→LUMO (95%)	(π, π^*)
PYBr/CB[6]	S_2	4.64	0.0024	HOMO-1→LUMO (75%) HOMO→LUMO+1 (10%)	(π,π^*)
	S_3	4.76	0.0020	HOMO-2→LUMO+1 (53%) HOMO→LUMO+1 (20%)	(n, π^*)
	\mathbf{S}_1	4.00	0.6218	HOMO→LUMO (96%)	(π,π^*)
PYCl/CB[7]	S_2	4.35	0.0184	HOMO-1→LUMO (93%)	(π,π^*)
	S_3	5.02	0.0006	HOMO-1→LUMO+1 (5%) HOMO-2→LUMO+1 (85%)	(n, π^*)
	\mathbf{S}_1	4.18	0.8000	HOMO→LUMO (96%)	(π,π^*)
PYBr/CB[7]	S_2	4.47	0.0237	HOMO-1→LUMO (88%)	(π, π^*)
	S_3	5.10	0.0086	HOMO→LUMO+1 (23%) HOMO-2→LUMO (63%)	(n, π^*)

Table S6. The calculated properties of the excited states of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7], including oscillator strength of the S₁ ($f_{S_1}-s_0$) and the T₁ ($f_{T_1}-s_0$), transition dipole moment both at S₁ ($\mu_{T_1}-s_0$) and T₁ ($\mu_{T_1}-s_0$), energy gap between the S₁ and T₁ ($\mu_{T_1}-s_0$), spin orbit coupling constant ($\xi_{T_1}-s_1$) between the S₁ and T₁, and the ratio of $\xi_{T_1}-s_1$ to $\mu_{T_1}-s_0$ ($\xi_{T_1}-s_1$).

Samples	$f_{S_1-S_2}$	$f_{T_1 - S_0}$	$\mu_{T_1 - S_0}$	$\mu_{S_1-S_0}$	$\Delta E_{T_1-S_1}$	$\xi_{T_1-S_1}$	$\frac{\xi_{T_1-S_{1/2}}}{\Lambda E_{T_1-S_{1/2}}}$
Samples	1 50	(10-7)	(Debye)	(Debye)	(eV)	(cm ⁻¹)	$\frac{2m_{T_1} - S_1}{(\text{cm}^{-1}/\text{eV})}$
PYCl	0.1051	0.96	0.0035	3.02	0.52	2.68	5.15
PYBr	0.0058	0.98	0.0036	0.78	0.10	1.62	16.2
PYCl/CB[6]	0.6402	6.72	0.0095	6.78	1.17	7.27	6.21
PYBr/CB[6]	0.7605	4.47	0.0080	7.04	1.51	2.29	1.51
PYCl/CB[7]	0.5049	1.14	0.0039	5.86	0.98	0.77	0.79
PYBr/CB[7]	0.7345	0.99	0.0036	6.97	1.32	0.30	0.23

Table S7. Calculated oscillator strength of the T_1 state $\begin{pmatrix} f_{T_1} - S_0 \end{pmatrix}$, vertical excitation energy of T_1 -S₀, phosphorescence wavelength of T_1 calculated at BMK/6-31G** level of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7] in crystal.

Compounds	$f_{T_1-S_0}$ (10-7)	$\frac{\Delta E_{T_1 - S_0}}{\text{(eV)}}$	Emission (Cal.) (nm)	Emission (Exp.) (nm)
PYC1	0.96	2.59	478	426
PYBr	0.98	2.44	509	470
PYCl/CB[6]	6.72	2.24	554	500
PYBr/CB[6]	4.47	2.26	549	500
PYCl/CB[7]	1.14	2.25	550	482
PYBr/CB[7]	0.99	2.30	539	/

Table S8. Calculated phosphorescence radiation rate (k_P) of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7] at BMK/6-31G** level in crystal.

	PYCl	PYBr	PYCl/CB[6]	PYBr/CB[6]	PYCl/CB[7]	PYBr/CB[7]
$k_{\rm p}({\rm s}^{-1})$	2.80×10 ¹	2.53×10 ¹	2.08×10^{2}	1.49×10 ²	2.50×10 ¹	2.28×10^{1}

Table S9. Calculated reorganization energies (λ) of PYCl, PYBr, PYCl/CB[6], PYBr/CB[6], PYCl/CB[7] and PYBr/CB[7] in crystal at BMK/6-31G(d,p) <u>level by AP method.</u>

	$\lambda(meV)$
PYCl	712
PYBr	691
PYCl/CB[6]	629
PYBr/CB[6]	651
PYCl/CB[7]	932
PYBr/CB[7]	865

III. The optimized geometries and the corresponding coordinates of the QM region of the PYCl, PYBr and their complexes at both S_0 and T_1 states.

Structure S1. The optimized geometry and the corresponding coordinate of the QM region of PYCl crystal at S_0 state

-0.51394900	1.83157300	0.51570800
-8.80106400	-1.69135800	-0.55256700
-10.15028600	-2.26242800	-0.61452100
-10.16166700	-3.10556600	-1.30402300
-10.85068300	-1.50848200	-0.97796900
-10.41008900	-2.57309600	0.39914000
-7.72804400	-2.45489100	-0.82811900
-7.92757400	-3.44575200	-1.22010100
-6.44380100	-1.98511000	-0.62886300
-5.62654800	-2.66242400	-0.85032400
-6.23244800	-0.67419600	-0.14608000
-7.39217200	0.09938700	0.10034700
-7.34662000	1.12499100	0.44330400
-8.64779300	-0.43237700	-0.09811500
-9.55326700	0.13317100	0.10139400
-4.87776500	-0.12124600	0.06266100
-4.71474900	1.19194100	0.54691000
-5.56652200	1.79513800	0.83165900
-3.44836600	1.74471700	0.70632900
-3.35150100	2.74819900	1.11125000
-2.32051300	0.98859100	0.37231000
-2.45482900	-0.32952700	-0.07521800
-1.57718200	-0.91715100	-0.32888300
-3.72611900	-0.88117600	-0.22787000
-3.80042100	-1.90602200	-0.57456300
2.10299900	3.26829700	0.77721300
	$\begin{array}{r} -0.51394900\\ -8.80106400\\ -10.15028600\\ -10.16166700\\ -10.85068300\\ -10.41008900\\ -7.72804400\\ -7.92757400\\ -6.44380100\\ -5.62654800\\ -6.23244800\\ -7.39217200\\ -7.34662000\\ -8.64779300\\ -9.55326700\\ -4.87776500\\ -4.71474900\\ -5.56652200\\ -3.44836600\\ -3.35150100\\ -2.32051300\\ -2.45482900\\ -1.57718200\\ -3.72611900\\ -3.80042100\\ 2.10299900\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Structure S2. The optimized geometry and the corresponding coordinate of the QM region of PYCl crystal at T_1 state

Br	-0 53061100	1 84840200	0 48098200
N	-8.78272800	-1.69066500	-0.56062800
С	-10.12098000	-2.26565900	-0.60323400
H	-10.13854000	-3.11202700	-1.28948400
Н	-10.83248500	-1.51710900	-0.95932200
Н	-10.37923700	-2.57768700	0.41303700
С	-7.69314000	-2.46511300	-0.83899700
Н	-7.89992500	-3.45344000	-1.23114300
С	-6.42081000	-2.00146400	-0.64712800
Н	-5.60497100	-2.67804100	-0.87446800
С	-6.19472000	-0.65864700	-0.14927900
С	-7.39136400	0.12139200	0.10424300
Н	-7.34999600	1.14757000	0.44622100
С	-8.63062100	-0.41015800	-0.09874400
Н	-9.54214500	0.14693900	0.09052600
С	-4.90184500	-0.13454500	0.06496300
С	-4.71375300	1.22535600	0.58402600
Н	-5.56894800	1.80217700	0.90525400
С	-3.46810900	1.76521200	0.72339300
Н	-3.35998900	2.76086800	1.14617800
С	-2.30708900	1.00876200	0.36025100
С	-2.44861600	-0.34698100	-0.08328700
Н	-1.56034700	-0.92232500	-0.33023800
С	-3.68747600	-0.90927000	-0.21944200
Н	-3.76647000	-1.93942600	-0.54357300
Cl	2.08806800	3.26122000	0.77870000

Structure S3. The optimized geometry and the corresponding coordinate of the QM region of PYBr crystal at S_0 state

Br	1.06563000	-0.48400800	0.01054200
Ν	-5.01001000	0.32720900	-6.70680100
С	-5.99738200	0.39529800	-7.79511100
Н	-6.32192800	-0.61953700	-8.04311100
Н	-6.85391200	0.98777100	-7.46774700
Н	-5.54056100	0.87413300	-8.66438500
С	-5.40860400	0.42748800	-5.42368100
Н	-6.46278500	0.61867800	-5.24430800
С	-4.49737800	0.30961300	-4.38993500
Н	-4.87355100	0.43563300	-3.38198900
С	-3.13155600	0.07202700	-4.65649300
С	-2.75941900	-0.03480700	-6.01709600
Н	-1.73638600	-0.23261200	-6.32102700
С	-3.71452900	0.09599900	-7.00494300
Н	-3.47541400	0.02639700	-8.05989800
С	-2.14048500	-0.05141800	-3.56428200
С	-2.56304700	-0.26866000	-2.23572600
Н	-3.61399600	-0.38119600	-1.98702000
С	-1.63467100	-0.39443300	-1.20189400
Н	-1.98770700	-0.58425500	-0.19179400
С	-0.26762100	-0.31697400	-1.48974500
С	0.17220400	-0.11338700	-2.80309100
Н	1.23485200	-0.06402300	-3.02686000
С	-0.75768800	0.02716000	-3.83497700
Н	-0.39536200	0.21219900	-4.84309400
Br	3.15359000	-0.67239900	2.50457100

Structure S4. The optimized geometry and the corresponding coordinate of the QM region of PYBr crystal at T_1 state

Br	1.08126500	-0.48213700	0.02659500
Ν	-4.98407200	0.31358100	-6.68232900
С	-5.96613200	0.37580900	-7.76289000
Н	-6.28812200	-0.63916200	-8.02297500
Н	-6.83072300	0.95746900	-7.43445300
Н	-5.51628000	0.86131800	-8.63295600
С	-5.39562500	0.35959100	-5.37891400
Н	-6.45566500	0.51584300	-5.20747500
С	-4.50060600	0.22595500	-4.35264700
Н	-4.89644900	0.29504400	-3.34740400
С	-3.08363100	0.05742600	-4.61212800
С	-2.70823700	0.01969200	-6.01275100
Н	-1.68044000	-0.12148300	-6.32891800
С	-3.66074200	0.12488100	-6.98602500
Н	-3.42600400	0.07624000	-8.04184100
С	-2.13819600	-0.07038700	-3.56952500
С	-2.55492900	-0.22233900	-2.16819000
Н	-3.60568300	-0.29139900	-1.91281400
С	-1.63490500	-0.35009200	-1.16386800
Н	-1.97827700	-0.50695000	-0.14409500
С	-0.23073600	-0.32910500	-1.45580500
С	0.21177200	-0.19002700	-2.81269300
Н	1.27772300	-0.17713500	-3.02849800
С	-0.68980800	-0.06674900	-3.83566900
Н	-0.32914600	0.05334400	-4.85215800
Br	3.14658800	-0.66739700	2.49715700

Structure S5. The optimized geometry and the corresponding coordinate of the QM region of PYCl/CB[6] crystal at S_0 state

Ν	-4.18580300	-0.96227200	0.90556300
С	-5.36663300	-1.08582200	1.72655400
С	-3.92885400	0.24027100	0.40499100
С	-2.61561200	0.59008500	0.20278300
С	-1.63763700	-0.37913500	0.19758100
С	-2.04113200	-1.70248000	0.33129700
С	-3.28117300	-1.94852900	0.84013100
С	-0.23892300	-0.04313100	0.10498400
С	0.67599900	-1.07964300	0.18231500
С	2.00219500	-0.80921100	0.02007200
С	2.52655300	0.43603700	-0.24109600
С	1.62148700	1.49573000	-0.09978800
С	0.25629600	1.26320800	0.03844500
Br	4.46365200	0.42701400	-0.91035400
Н	-5.20676500	-0.57221000	2.67918500
Н	-5.50100700	-2.14563100	1.89128300
Н	-6.20712300	-0.61548900	1.23014400
Н	-4.80343700	0.87131800	0.30421500
Н	-2.28424200	1.60073800	0.07877900
Н	-1.34438400	-2.48346100	0.14079500
Н	-3.60883300	-2.89029200	1.25179100
Н	0.40227800	-2.11003700	0.34157800
Н	2.63110500	-1.63053900	0.10035100
Н	1.92047600	2.51195500	-0.03062100
Н	-0.40652400	2.12249700	0.07970900

Structure S6. The optimized geometry and the corresponding coordinate of the QM region of PYCl/CB[6] crystal at T₁ state

N	-4.17375300	-0.97749000	0.90893900
С	-5.33152200	-1.09993300	1.75047400
С	-3.92178200	0.24350900	0.39604500
С	-2.62275700	0.60288400	0.20055100
С	-1.61228100	-0.36763400	0.19197100
С	-2.02371300	-1.71813000	0.33702200
С	-3.25663500	-1.97096500	0.82928800
С	-0.26539000	-0.04035400	0.13710800
С	0.69480800	-1.09872800	0.22000400
С	1.99172400	-0.82118200	0.04452500
С	2.53755900	0.45467100	-0.22524900
С	1.60208100	1.53610600	-0.05881300
С	0.26729600	1.31219200	0.10457100
Br	4.42433000	0.42819800	-0.91303600
Н	-5.18323400	-0.55050500	2.68788500
Н	-5.43889100	-2.15905300	1.94858500
Н	-6.19538300	-0.66794000	1.25592300
Н	-4.80450700	0.86178700	0.29372900
Н	-2.29345400	1.61357000	0.07245400
Н	-1.32962000	-2.49455900	0.12285000
Н	-3.59896300	-2.92142300	1.20437500
Н	0.41694300	-2.12241100	0.39944600
Н	2.63655400	-1.63102100	0.10813900
Н	1.91500200	2.54744400	0.03372100
Н	-0.39616900	2.16022800	0.23435400

Structure S7. The optimized geometry and the corresponding coordinate of the QM region of PYBr/CB[6] crystal at S_0 state

N	3.88865300	1.75911300	0.69310000
С	4.94591800	2.36432100	1.50470200
С	2.92951500	2.56368800	0.23928500
С	1.65513500	2.05532200	0.06416800
С	1.42453100	0.69927700	0.12482400
С	2.54883000	-0.11422700	0.24899900
С	3.77067800	0.42732100	0.58799000
С	0.06738400	0.13570700	0.02649800
С	-1.13238700	0.86368900	-0.11408100
С	-2.36572400	0.20512700	-0.27396200
С	-2.41816300	-1.18454400	-0.38680300
С	-1.27165400	-1.84365100	-0.01444400
С	-0.05389900	-1.23983200	0.17059600
Н	5.37342300	3.24158800	1.01188900
Η	5.69358200	1.59068000	1.67424900
Η	4.51130100	2.67741100	2.45507400
Η	3.23815800	3.59412600	0.09943900
Н	0.79744100	2.68013000	-0.07583200
Η	2.43436900	-1.16882600	0.15538900
Η	4.66455600	-0.15041400	0.79547500
Η	-1.13642000	1.95082900	-0.08479400
Η	-3.28285100	0.74446600	-0.18001300
Н	-1.31683700	-2.85438800	0.21965100
Н	0.77691200	-1.87759500	0.43639900
Br	-4.13095900	-2.34410300	-0.87503400

Structure S8. The optimized geometry and the corresponding coordinate of the QM region of PYBr/CB[6] crystal at T₁ state

Ν	3.87539500	1.72736700	0.68087100
С	4.91246800	2.32416300	1.51147100
С	2.90449500	2.55216700	0.21706400
С	1.63622700	2.06809500	0.07138600
С	1.36785200	0.68451700	0.16026200
С	2.52967900	-0.14879700	0.25469600
С	3.75554200	0.38222200	0.54009100
С	0.07916300	0.15937700	0.11513100
С	-1.19635800	0.90733600	0.01802900
С	-2.38888000	0.25844900	-0.20887400
С	-2.43273200	-1.16051900	-0.42224400
С	-1.27262800	-1.84005200	0.01736200
С	-0.08379200	-1.27020400	0.27948400
Н	5.35587300	3.19817400	1.02287500
Н	5.65485700	1.55086700	1.70738600
Н	4.46606300	2.66222300	2.44978800
Н	3.22918800	3.57547300	0.06363400
Н	0.77951000	2.69087800	-0.08245100
Н	2.39849800	-1.20054400	0.14220000
Н	4.66162900	-0.19812700	0.67833200
Н	-1.20337900	1.98135000	0.18205100
Н	-3.31608400	0.77991000	-0.09697200
Н	-1.36034100	-2.85153300	0.23212700
Н	0.71968300	-1.89568800	0.63817000
Br	-4.12165700	-2.32846700	-0.88122700

Structure S9. The optimized geometry and the corresponding coordinate of the QM region of PYCl/CB[7], S_0 state

Ν	-6.12123700	1.52645000	0.20749200
С	-5.27423700	1.27414300	-0.97942700
С	-5.67823500	2.33116500	1.19532300
С	-6.46501700	2.63061300	2.29572100
С	-7.77749200	2.11771600	2.38687100
С	-8.17866100	1.23711800	1.36260300
С	-7.33843300	0.95488400	0.30335600
С	-8.73047900	2.54411500	3.43501900
С	-10.08134500	2.71903700	3.08304800
С	-10.99634300	3.24098000	3.99790300
С	-10.53757600	3.57163000	5.27185000
С	-9.21769200	3.35417600	5.67270400
С	-8.30931300	2.83905900	4.74343100
Н	-4.71715400	2.18703600	-1.20444300
Н	-5.92064600	1.01141600	-1.81946200
Н	-4.57826900	0.45248800	-0.79342700
Н	-4.69003800	2.74431200	1.04351400
Н	-6.08052500	3.30438400	3.05606700
Н	-9.14146200	0.74755600	1.42175000
Н	-7.61170900	0.26711300	-0.48607400
Н	-10.43011100	2.48134800	2.08490800
Н	-12.02839900	3.38780700	3.69700600
Н	-8.88739800	3.57847800	6.68212800
Н	-7.29312000	2.62739000	5.05972700
Br	-11.83808300	4.41348600	6.57084000

Structure S10. The optimized geometry and the corresponding coordinate of the QM region of PYCl/CB[7], T_1 state

N	-6.23385300	1.55240100	0.15580200
С	-5.34850400	1.27741500	-0.98188100
С	-5.70449900	1.74434300	1.40696600
С	-6.49830200	2.02178500	2.48717800
С	-7.93662900	2.14109400	2.34914900
С	-8.43476600	1.93346400	1.00478500
С	-7.58438700	1.65630100	-0.02881100
С	-8.79232600	2.49182300	3.41994600
С	-10.23540800	2.68766500	3.20801600
С	-11.01956500	3.27899600	4.15739900
С	-10.44130900	3.66321700	5.40486400
С	-9.08113800	3.35343300	5.72026000
С	-8.28681300	2.75815400	4.77688700
Н	-4.81687400	2.19746400	-1.25415600
Н	-5.94795300	0.91911500	-1.82091300
Н	-4.62344700	0.50139400	-0.72544300
Н	-4.62487200	1.67625800	1.46760900
Н	-6.01887700	2.15238200	3.45060700
Н	-9.49253800	1.99143900	0.78452100
Н	-7.92709800	1.51692000	-1.04481300
Н	-10.70407400	2.36855100	2.29041100
Н	-12.07386200	3.43795900	3.95569200
Н	-8.67712500	3.57444100	6.70378400
Н	-7.27645200	2.48229900	5.04867200
Br	-11.59445400	4.57198900	6.75111400

Structure S11. The optimized geometry and the corresponding coordinate of the QM region of PYBr/CB[7], S_0 state

N	-6.06168000	1.48056800	0.27588500
С	-5.21892000	1.27696800	-0.92354800
С	-5.56928000	2.13398300	1.34710700
С	-6.36857300	2.45494200	2.43222100
С	-7.73798200	2.11351000	2.42834300
С	-8.18301800	1.33684100	1.33840400
С	-7.33442000	1.03866800	0.29052600
С	-8.68939800	2.61271000	3.44790900
С	-8.28298100	2.90889700	4.76232300
С	-9.18126800	3.49100900	5.66215400
С	-10.47756300	3.77487700	5.22861000
С	-10.92205500	3.45889700	3.94620300
С	-10.01775500	2.87284500	3.06002500
Н	-5.87541000	1.20402500	-1.79345900
Н	-4.62675600	0.36373300	-0.84050500
Н	-4.55267800	2.13731100	-1.02354500
Н	-4.52561300	2.40728500	1.27722900
Н	-5.93882700	3.01446800	3.25658700
Н	-9.19097500	0.94536000	1.32773300
Н	-7.64162900	0.44217700	-0.55808300
Н	-7.28422700	2.66169200	5.10958500
Н	-8.85967600	3.71618300	6.67429800
Н	-11.93475100	3.66874900	3.61795500
Н	-10.35776600	2.65450100	2.05381100
Br	-11.76388100	4.69977800	6.48556800

Structure S12. The optimized geometry and the corresponding coordinate of the QM region of PYBr/CB[7], T_1 state

Ν	-5.94344300	1.62875300	0.33481400
С	-4.99118200	1.45073500	-0.76814400
С	-5.50119900	1.93212200	1.59364100
С	-6.36738800	2.17618900	2.62408200
С	-7.79995900	2.15686700	2.41075500
С	-8.20774700	1.73160800	1.08427300
С	-7.28539900	1.47598600	0.10862900
С	-8.72129900	2.58801000	3.39149800
С	-8.30926700	2.91740500	4.76837600
С	-9.17876700	3.52166300	5.63894800
С	-10.51487400	3.80478000	5.22161900
С	-10.99220100	3.41365000	3.93303200
С	-10.13401200	2.81173400	3.05554900
Н	-5.45549700	1.82691800	-1.68414100
Н	-4.73228700	0.39506900	-0.89926200
Н	-4.07994600	2.01149700	-0.54548900
Н	-4.42802600	1.96536200	1.70868000
Н	-5.95253700	2.40764300	3.59743500
Н	-9.25086300	1.57476500	0.84767200
Н	-7.54920500	1.14474600	-0.88723000
Н	-7.31702800	2.65911100	5.11936200
Н	-8.85072900	3.76890300	6.64444100
Н	-12.02111600	3.59371900	3.63757900
Н	-10.50777600	2.53917300	2.08025200
Br	-11.76305800	4.74756500	6.46255400

