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Here, we present loss modulus spectra for PVP0.84PT0.16, shear storage spectra for PVP1–xPTx with x = 
0.16. 0.33, and 0.66, as well as ' and der  spectra for PVP1–xPTx with x = 0.16. 0.33, and 0.66. 
Additionally, we provide details regarding the measurements carried out using differential scanning 
calorimetry and how they were analyzed. Furthermore, viscosity and conductivity data are presented in a 
Walden-type plot. 

 
 

 

S1. Additional spectra from shear rheology 
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Fig. S1. Shear storage and (b) shear loss modulus spectra measured 
for PVP1–xPTx with x = 0.16. 
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Fig. S2. Shear storage spectra for PVP1–xPTx with x given by (a) 
0.10, (b) 0.33, and (c) 0.66.  
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S2. Additional spectra from dielectric spectroscopy 
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Fig. S3. Dielectric data of PVP0.84PT0.16 presented in terms of (a) 
the permittivity ' and (b) the dielectric loss der   derived thereof.  

101

102

'

(a)

280 K

5 K
steps

10-1 101 103 105
10-1

100

101

'
' d

er

frequency  (Hz)

PVP0.67PT0.33 

(b)

215 K

 
Fig. S4. Dielectric data of PVP0.66PT0.33 presented in terms of (a) ' 
and (b) der  . 
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Fig. S5. Dielectric data of PVP0.34PT0.66 presented in terms of (a) ' 
and (b) der  . 

 
 

S3. Differential scanning calorimetry 
 
A Q2000 differential scanning calorimeter from TA 

Instruments located in the Department of Biochemical and 
Chemical Engineering at TU Dortmund University was used 
for the DSC measurements. Details of the employed 
procedures have been described previously.S1  

The thermograms shown in Fig. S6 were recorded by 
employing a heating rate q of 10 K/min. From the 
intersection of the red lines Fig. S6 the onset glass transition 
temperature Tg was determined. Typically, the glass 
transition occurs where the structural relaxation time is on 
the order of 100 s. For a better estimate of DSC the approach 
described in Ref. S2, is useful. Here, as additional parameter, 
the effective energy barrier E against structural 
rearrangements enters, so that 

2

DSC
B gk T

q E
 


                (S1) 

The difference between the effective energy barriers from 
dielectric spectroscopy to those from rheology that one can 
infer from Fig. 8(a) near Tg, was used to assess the error bar 
for DSC which is shown in that figure. 
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Fig. S6. The blue symbols represent the raw DSC traces measured 
for PVP1–xPTx. The intersection of the straight red lines was used to 
assess the onset transition temperatures Tg. For x = 0.33, the large 
"creeping" deviation of the high-temperature line to the DSC data is 
taken to signal the appearance of a bimodal calorimetric signature. 

 

S4. Walden-type plot 
 
 To test the relation of the shear viscosities 0 and the DC 
conductivities 0, in Fig. S7 we collect the corresponding 
data from Fig. 7.  One observes that power laws, 0  0

–, 
with exponents  emerge in the representation of Fig. S7. For 
neat PT, an exponent  = 1 signals a coupling of the two 
transport coefficients, as expected for an ionic liquid. For the 
mixed liquids, a fractional exponent is found and for several 
compositions a high- and a low-temperature regime is 
discernible on the basis of a change of slope. 
 Note that according to the Nernst-Einstein relation, Eq. 
(9), the (charge) diffusion coefficient should be proportional 
to 0. Therefore, an exponent  < 1 can be taken to signal the 
existence of a fractional Stokes-Einstein relation. 
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Fig. S7. Walden-type plot of DC conductivity 0 versus zero-shear 
viscosity 0. The full symbols refer to data points where 0 was 
determined directly from the data, the open symbols were 
determined on the basis of frequency temperature superposition. 
The lines reflect power laws, 0  0

–, that apply at high 
temperature (HT) or at low temperature (LT). If a break in slope  
exists, then dashed lines are used for the LT regime. The inset 
summarizes the exponents. 
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