A low-temperature thermoelectric transport study of non-stoichiometric AgSbTe₂

Chinnu V. Devan^{1,4}, Mahima M. Kurian², P. N. Santhosh², Manoj Raama Varma^{3, 4, *}

Biswapriya Deb^{1, 4, *}

¹Centre for Sustainable Energy Technology (C-SET), CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram- 695019, Kerala, India

²Department of Physics, Indian Institute of Technology Madras (IITM), Chennai 600036, India

³Materials Science and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram- 695019, Kerala, India

⁴Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India

*Corresponding authors

Email: manojraamavarma@gmail.com, biswapriya.deb@niist.res.in

Tel.: +91-471-2515478, +91-471-2515377 Fax: +91-471-2491712

Characterization techniques

The crystal structure of synthesized AgSbTe₂ was analysed by powder X-ray diffraction techniques (Empyrean 3, PANalatycal X-ray diffractometer) using Cu-K α radiation with wavelength 1.5406Å in the 2 θ range 20° — 90° with a step size of 0.005°. The XRD data was refined using the software GSAS2. The microstructure and local composition were investigated by scanning electron microscopy (Zeiss EVO 18 cryo-SEM, operating voltage of 15 kV)) and high-resolution transmission electron microscopy (HRTEM (FEI Tecnai F20, operated at 300 kV). The elemental mapping of the samples was done by TEM-EDS. The density of the pellets was measured using the Archimedes method and the Vickers microhardness of the material was calculated using Vickers Microhardness tester - Banbros. The low temperature electrical and thermal transport measurements and heat capacity of the samples were done through the electrical transport option (ETO), thermal transport option (TTO, with \pm 5% accuracy of thermal conductance and Seebeck coefficient, 0.01 % for resistivity) and heat capacity set-up of physical property measurement system (PPMS, Quantum Design).

Element	Actual weight %	Average weight %
Ag	22.24	20.61
Sb	25.11	26.86
Те	52.63	52.76

Table 1. Elemental weight percentage of AgSbTe2 calculated and obtained from SEM-EDX

Figure S1. Normalized resistivity data versus T

Figure S2. Variation of S with T

Figure S3. A comparison study on the thermal conductivity of the present material with previous reports

Figure S4. TGA and DTA of the material

Figure S5 a: Plot of measured thermal conductivity versus temperature with error bar of \pm 5%

Figure S5 b: Plot of measured figure of merit versus temperature with error bar of $\pm 15\%$