Electronic Supplementary Information

Highly Efficient Mica-Incorporated Graphene Oxide-based Membranes for Water Purification and Desalination

Ahmed Ali Jamali ${ }^{1 \overline{\bar{T}}}$, Muhammad Ismail Vohra ${ }^{2 \overline{\bar{T}}}$, Akbar Ali ${ }^{3}$, Ahmed Nadeem ${ }^{4}$, Sabry M Attia ${ }^{4}$, Ali Hyder ${ }^{5}$, Ayaz Ali Memon ${ }^{5}$, Faraz Khan Mahar ${ }^{1}$, Rasool Bux Mahar ${ }^{1}$, Jun Yang ${ }^{3 *}$, Khalid Hussain Thebo ${ }^{6 *}$
${ }^{1}$ U.S.-Pakistan Centre for Advanced Studies in Water (USPCAS-W), Mehran University of Engineering and Technology (76062), Jamshoro, Pakistan
${ }^{2}$ One Health Laboratory, Research and Development Karachi, Pakistan
${ }^{3}$ State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China
${ }^{4}$ Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
${ }^{5}$ National Center of Excellence in Analytical Chemistry, University of Sindh (76080), Jamshoro Pakistan
${ }^{6}$ Institute of Metal Research (IMR), Chinese Academy of Sciences, Shenyang, China
Corresponding Email: jyang@ipe.ac.cn (J. Y.)*
Khalidthebo@yahoo.com (K.H.T.)*
$\bar{\tau}$ Contributed Equally

Fig S1. Proposed mechanism of mica with graphene oxide nanosheets.

Fig. S2. (a,b) Ultraviolet-visible absorption spectra of the feed, and permeate of (a) RB, and (b) MLB solution after filtration by MGO composite membrane.

Fig. S3 Zeta potential graph of MGO membranes

Table S1. The equilibrium weight swelling ratio (ESR) of GO, MGO ($50 \mathrm{wt} . \%$) membranes in water.

Type of membrane	ESR
GO	2.5 ± 0.1
MGO	1.2 ± 0.1

Table S2. Permeance of GO and MGO Membranes by Varying Different Thicknesses in DI Water at Room Temperature

Thickness (nm)	Pristine GO membrane Permeance $\left(\mathrm{L} \mathrm{~m}^{-2} h^{-1} \operatorname{bar}^{-1}\right)$	Thickness (nm)	$\begin{aligned} & \text { MGO membrane } \\ & \text { Permeance } \\ & \left(\mathrm{L} \mathrm{~m}^{-2} \mathrm{~h}^{-1} \text { bar }^{-1}\right) \end{aligned}$
290 ± 10	85 ± 5	260 ± 10	870 ± 5
620 ± 10	46 ± 4	530 ± 10	665 ± 5
940 ± 10	30 ± 2	790 ± 10	540 ± 5
1460 ± 10	10 ± 2	1350 ± 10	355 ± 5

